المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9764 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
{فازلهما الشيطان عنها فاخرجهما مما كانا فيه}
2024-07-06
آدم والنهي عن الشجرة
2024-07-06
سجود الملائكة واعراض ابليس
2024-07-06
من آداب عصر الغيبة: الاستغاثة به
2024-07-06
من آداب عصر الغيبة: التبرؤ من أعدائه
2024-07-06
من آداب عصر الغيبة: إحياء أمره بين الناس
2024-07-06

الأفعال التي تنصب مفعولين
23-12-2014
صيغ المبالغة
18-02-2015
الجملة الإنشائية وأقسامها
26-03-2015
اولاد الامام الحسين (عليه السلام)
3-04-2015
معاني صيغ الزيادة
17-02-2015
انواع التمور في العراق
27-5-2016

Covering Maps and Discontinuous Group Actions-Local Topological Properties and Local Homeomorphisms  
  
1680   02:26 مساءً   date: 24-6-2017
Author : David R. Wilkins
Book or Source : Algebraic Topology
Page and Part : ...


Read More
Date: 29-7-2021 979
Date: 1-7-2017 1559
Date: 5-6-2021 1076

Definition A topological space X is said to be locally connected if, given any point x of X, and given any open set U in X with x ∈ U, there exists some connected open set V in X such that x ∈ V and V ⊂ U.

Definition A topological space X is said to be locally path-connected if,  given any point x of X, and given any open set U in X with x ∈ U, there exists some path-connected open set V in X such that x ∈ V and V ⊂ U.

Definition A topological space X is said to be locally simply-connected if,  given any point x of X, and given any open set U in X with x ∈ U, there exists some simply-connected open set V in X such that x ∈ V and V ⊂ U.

Definition A topological space X is said to be contractible if the identity map of X is homotopic to a constant map that sends the whole of X to a single point of X.

Definition A topological space X is said to be locally contractible if, given any point x of X, and given any open set U in X with x ∈ U, there exists some contractible open set V in X such that x ∈ V and V ⊂ U.

Definition A topological space X is said to be locally Euclidean of dimension n if, given any point x of X, there exists some open set V such that x ∈ V and V is homeomorphic to some open set in n-dimensional Euclidean space Rn.

Note that every locally Euclidean topological space is locally contractible,  every locally contractible topological space is locally simply-connected, every locally simply-connected topological space is locally path-connected, and every locally path-connected topological space is locally connected.

Remark A connected topological space need not be locally connected, alocally connected topological space need not be connected. A standard example is the comb space. This space is the subset of the plane R2consisting of the line segment joining (0,0) to (1, 0), the line segment joining (0,0) to  (0, 1), and the line segments joining (1/n,0) to (1/n,1) for each positive integer n. This space is contractible, and thus simply-connected, path -connectedand connected. However there is no connected open subset that contains the point (0,1) and is contained within the open disk of radius 1 about this point,  and therefore the space is not locally connected, locally path-connected, locally simply-connected or locally contractible.

Proposition 1.14 Let X be a connected, locally path-connected topological space. Then X is path-connected.

Proof Choose a point x0 of X. Let Z be the subset of X consisting of all points x of X with the property that x can be joined to x0 by a path. We show that the subset Z is both open and closed in X.

Now, given any point x of X there exists a path connected open set Nx in X such that x ∈ Nx. We claim that if x ∈ Z then Nx ⊂ Z, and if x ∉Z then Nx ∩ Z = ∅

Suppose that x ∈ Z. Then, given any point x0 of Nx, there exists a path in Nx from x0 to x. Moreover it follows from the definition of the set Z that there exists a path in X from x to x0. These two paths can be concatenated to yield a path in X from x0 to x0, and therefore x0 ∈ Z. This shows that Nx ⊂ Z whenever x ∈ Z.  Next suppose that x ∉Z. Let x 0 ∈ Nx. If it were the case that x0 ∈ Z, then we would be able to concatenate a path in Nx from x to x0 with a path in X from x0 to x0 in order to obtain a path in X from x to x0. But this is impossible, as x ∉Z. Therefore Nx ∩ Z = ∅ whenever x ∉Z.

Now the set Z is the union of the open sets Nx as x ranges over all points of Z. It follows that Z is itself an open set. Similarly X Z is the union of the open sets Nx as x ranges over all points of X Z, and therefore X Z is itself an open set. It follows that Z is a subset of X that is both open and closed. Moreover x0 ∈ Z, and therefore Z is non-empty. But the only subsets of X that are both open and closed are ∅ and X itself, since X is connected.

Therefore Z = X, and thus every point of X can be joined to the point x0 by a path in X. We conclude that X is path-connected, as required.

Let P be some property that topological spaces may or may not possess.

Suppose that the following conditions are satisfied:—

(i) if a topological space has property P then every topological space homeomorphic to the given space has property P;

(ii) if a topological space has property P then open subset of the given space has property P;

(iii) if a topological space has a covering by open sets, where each of these open sets has property P, then the topological space itself has property P.

Examples of properties satisfying these conditions are the property of being locally connected, the property of being locally path-connected, the property of being locally simply-connected, the property of being locally contractible,  and the property of being locally Euclidean.

Properties of topological spaces satisfying conditions (i), (ii) and (iii)  above are topological properties that describe the local character of the topological space. Such a property is satisfied by the whole topological space if and only if it is satisfied around every point of that topological space.

Definition Let f: X → Y be a continuous map between topological spaces X and Y . The map f is said to be a local homeomorphism if, given any point x of X, there exists some open set U in X with x ∈ U such that the function f maps U homeomorphically onto an open set f(U) in Y .

Lemma 1.15 Every covering map is a local homeomorphism.

Proof Let p: X˜ → X be a covering map, and let w be a point of X˜. Then p(w) ∈ U for some evenly-covered open set U in X. Then p−1(U) is a disjoint union of open sets, where each of these open sets is mapped homeomorphically onto U. One of these open sets contains the point w: let that open set be U˜. Then p maps U˜ homeomorphically onto the open set U. Thus the covering map is a local homeomorphism.

Example Not all local homeomorphisms are covering maps. Let S1 denote the unit circle in R2, and let α: (−2, 2) → S1 denote the continuous map that sends t ∈ (−2, 2) to (cos 2πt,sin 2πt). Then the map α is a local homeomorphism. But it is not a covering map, since the point (1, 0) does not belong to any evenly covered open set in S1.

Let f: X → Y be a local homeomorphism between topological spaces X and Y , and let P be some property of topological spaces that satisfies conditions (i), (ii) and (iii) above. We claim that X has property P if and only if f(X) has property P. Now there exists an open cover U of X by open sets, where the local homeomorphism f maps each open set U belonging to U homeomorphically onto an open set f(U) in Y . Then the collection of open sets of the form f(U), as U ranges over U constitutes an open cover of f(X).  Now if X has property P, then each open set U in the open cover U of X has property P (by condition (ii)). But then set f(U) has property P for each open set U belonging to U (by condition (i)). But then f(X) itself must have property P (by condition (iii)). Conversely if f(X) has property P,  then f(U) has property P for each open set U in the open cover U of X. But then each open set U belonging to the open cover U has property P (as U is homeomorphic to f(U)). But then X has property P (by condition (iii)).  A covering map p: X˜ → X between topological spaces is a surjective local homeomorphism. Let P be some property of topological spaces satisfying conditions (i), (ii) and (iii) above. Then the covering space X˜ has property P if and only if the base space X has property P. A number of instances of this principle are collected together in the following proposition.

Proposition 1.16 Let p: X˜ → X be a covering map. Then the following are true:

(i) X˜ is locally connected if and only if X is locally connected;

(ii) X˜ is locally path-connected if and only if X is locally path-connected;

(iii) X˜ is locally simply-connected if and only if X is locally simply connected;

(iv) X˜ is locally contractible if and only if X is locally contractible;

(v) X˜ is locally Euclidean if and only if X is locally Euclidean.

Corollary 1.17 Let X be a locally path-connected topological space, and let p: X˜ → X be a covering map over X. Suppose that the covering space X˜ is connected. Then X˜ is path-connected.

Proof The covering space X˜ is locally path-connected, by Proposition 1.16.

It follows from Proposition 1.14 that X˜ is path-connected

 

 

 

 

 

 

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.