المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية


John George Brotchie Meiklejohn  
  
139   01:04 مساءً   date: 19-4-2017
Author : H Jack
Book or Source : John Meiklejohn obituary, Edinburgh Mathematical Notes 38
Page and Part : ...


Read More
Date: 22-4-2017 192
Date: 11-4-2017 151
Date: 19-4-2017 151

Born: 1872 in Weydale, Thurso, Caithness, Scotland

Died: 19 January 1951 in Dundee, Scotland


John Meiklejohn's father was James Meiklejohn (born in Dunnet, Caithness about 1827) who was a farmer. His mother was Janet Meiklejohn (born in Walls, Orkney about 1831). He had several older siblings: Elizabeth (born about 1857), Donald (born about 1858), James (born about 1859), Margaret (born about 1861), Janet (born about 1864), Mary Ann (born about 1866), William (born about 1868) and Sinclair (born about 1870) and one younger brother, David (born about 1875).

John Meiklejohn attended Weydale Public School for five years, followed by the Miller Institution for four and a half years. He sat the Preliminary Examinations of Thurso School Board obtaining passes in Higher Mathematics, Latin, and English in 1892, also passing Lower Greek in the same year. After having passed the Preliminary Examination he first matriculated at Edinburgh University in October 1892. It is perhaps worth noting that Meiklejohn did not seem particularly fond of his middle names since he gave 'John Meiklejohn' as his 'Name in full' when he matriculated.

He went to the University of Edinburgh to study classics and in his first session studied Ordinary Latin and Greek. However, after taking one of Chrystal's Mathematics classes he became a mathematician. He was awarded an M.A. in 1898 with First Class Honours in Mathematics and Natural Philosophy. Following this, he was appointed as an Assistant Master at Dundee High School. In 1902 he was promoted to Head of Mathematics at the School, a post which he held until he retired in 1938. Henry Jack writes [1]:-

As a teacher he was supreme. Sir Edmund Whittaker once told the present writer that he was the best teacher of Mathematics in the East of Scotland. If there were any doubts as to his rapid promotion to the headship after only four years of teaching, these were soon dispelled, for three years later there began an almost unbroken sequence of highly-placed John Welsh Mathematical Bursars at his old University. His outstanding success as a teacher depended on three things - (1) he was a first-class mathematician with a great love for his subject; (2) he prepared every lesson with meticulous care; (3) he was a strict disciplinarian.

Meiklejohn joined the Edinburgh Mathematical Society in December 1898, in the year in which he graduated from Edinburgh University.

As to his hobbies, Henry Jack writes [1]:-

Meiklejohn was a keen swimmer all his life, and a month of every summer was spent in exploring some new part of the Highlands and Islands, either on foot or on cycle.


 

  1. H Jack, John Meiklejohn obituary, Edinburgh Mathematical Notes 38 (1952) 24-25.
  2. Biographical Index of Staff and Alumni (University of Edinburgh).
  3. Graduates in Arts, 1884-1925 (University of Edinburgh).
  4. Graduates in Arts (University of Edinburgh).

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.