Read More
Date: 28-7-2016
![]()
Date: 22-8-2016
![]()
Date: 6-9-2016
![]() |
Time-Dependent Harmonic Oscillator I
Consider a simple harmonic oscillator in one dimension:
(i)
At t = 0 the wave function is
(ii)
where ψn (x) is the exact eigenstate of the harmonic oscillator with eigenvalue hω(n+1/2).
a) Give Ψ(x, t) for t ≥ 0.
b) What is the parity of this state? Does it change with time?
c) What is the average value of the energy for this state? Does it change with time?
SOLUTION
a) At times t ≥ 0 the wave function is
(1)
b) The state Ψ(x, t) has even parity: it remains the same if one replaces x by –x, since ѱ2n(-x) = ѱ2n(x). This is true for all times.
c) The average value of the energy is
(2)
which is independent of time.
|
|
الصين.. طريقة لمنع تطور قصر النظر لدى تلاميذ المدارس
|
|
|
|
|
ماذا سيحدث خلال كسوف الشمس يوم السبت؟
|
|
|
|
|
قسم الشؤون الدينية يختتم محاضراته الرمضانية في صحن مرقد أبي الفضل العباس (عليه السلام)
|
|
|