المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9764 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
المستحقون للخمس
2024-07-08
المخول بتقسيم الخمس
2024-07-08
الخمس واحكامه
2024-07-08
قبر رعمسيس بطيبة
2024-07-08
آثار (رعمسيس الأول) في الكرنك.
2024-07-08
أعمال رعمسيس الأول (العرابة المدفونة)
2024-07-08

الأفعال التي تنصب مفعولين
23-12-2014
صيغ المبالغة
18-02-2015
الجملة الإنشائية وأقسامها
26-03-2015
اولاد الامام الحسين (عليه السلام)
3-04-2015
معاني صيغ الزيادة
17-02-2015
انواع التمور في العراق
27-5-2016

Arc-Transitive Graph  
  
2110   02:13 صباحاً   date: 20-4-2022
Author : Bouwer, Z
Book or Source : "Vertex and Edge Transitive, But Not 1-Transitive Graphs." Canad. Math. Bull. 13
Page and Part : ...


Read More
Date: 23-4-2022 1400
Date: 27-4-2022 1409
Date: 20-5-2022 2108

Arc-Transitive Graph

An arc-transitive graph, sometimes also called a flag-transitive graph, is a graph whose graph automorphism group acts transitively on its graph arcs (Godsil and Royle 2001, p. 59).

More generally, a graph G is called s-arc-transitive (or simply "s-transitive") with s>=1 if it has an s-route and if there is always a graph automorphism of G sending each s-route onto any other s-s-route (Harary 1994, p. 173). In other words, a graph is s-transitive if its automorphism group acts transitively on all the s-routes (Holton and Sheehan 1993, p. 203). Note that various authors prefer symbols other than s, for example n (Harary 1994, p. 173) or t.

Arc-transitivity is an even stronger property than edge-transitivity or vertex-transitivity, so arc-transitive graphs have a very high degree of symmetry.

A 0-transitive graph is vertex-transitive. A 1-transitive graph is simply called an "arc-transitive graph" or even a "transitive graph." More confusingly still, arc-transitive graphs (and therefore in fact s-transitive graphs for s>=1) are sometimes called symmetric graphs (Godsil and Royle 2001, p. 59). This terminology conflict is particularly confusing since, as first shown by Bouwer (1970), graphs exist that are symmetric (in the sense of both edge- and vertex-transitive) but not arc-transitive, the smallest known example being the Doyle graph.

Symmetric non-arc-transitive graphs were first considered by Tutte (1966), who showed that any such graph must be regular of even degree. The first examples were given by Bouwer (1970), who gave a constructive proof for a connected 2n-regular symmetric arc-intransitive graphs for all integers n>=2. The smallest such Bouwer graph has 54 vertices and is quartic. Another example of a symmetric non-arc-transitive graph is the 6-regular nonplanar diameter-3 graph on 111 vertices discovered by G. Exoo (E. Weisstein, Jul. 16, 2018).

A connected graph G with no endpoints (i.e., with minimum vertex degree delta(G)>=2) is said to be strictly s-transitive (with s>=1) if G is s-transitive but not (s+1)-transitive (Holton and Sheehan 1993, p. 206). Such graphs have also been called s-regular (Tutte 1947, Coxeter 1950, Frucht 1952) and s-unitransitive (Harary 1994, p. 174). A strictly s-transitive graph G has exactly one automorphism alpha such that alphaW_1=W_2 for any two s-routes W_1 and W_2 of G (Harary 1994, p. 174).

The cycle graph C_n (for n>=3) is s-transitive for all s>=0, as is kC_n for any positive integer k (Holton and Sheehan 1993, p. 204).

The numbers of arc-transitive graphs on n=1, 2, ... vertices are 0, 1, 1, 3, 2, 6, 2, 8, 5, ... (OEIS A180240), as summarized in the table below, where P_n denotes a path graph, C_n a cycle graph, nP_2 is a ladder rung graph, K_n a complete graph, K_(m,n) a complete bipartite graph, K_(m,n,p) a complete tripartite graph, Q_n a hypercube graph, Ci_n(k_1,...,k_m) a circulant graph, and kG a graph union of k copies of G.

2 P_2
3 C_3
4 2P_2C_4K_4
5 C_5K_5
6 K_6C_63P_2, octahedral graph Ci_6(1,2)2C_3, utility graph K_(2,3)
7 K_7C_7
8 Ci_8(2,4)K_8K_(4,4), cubical graph Q_3C_84P_2, 16-cell graph Ci_8(1,2,3)2C_4
9 C_9K_93C_3, generalized quadrangle GQ(2,1)K_(3,3,3)

The numbers of connected arc-transitive graphs on n=1, 2, ... vertices are 0, 1, 1, 2, 2, 4, 2, 5, 4, 8, ... (OEIS A286280).

A tree may be s-transitive yet not (s-1)-transitive. For example, the star graph S_n with n>=2 is edge-transitive and 2-transitive, but not 1-transitive. However, an s-transitive graph that is not a tree is also k-transitive for all 0<=k<s (Holton and Sheehan 1993, p. 204), and so is most clearly termed "strictly s-transitive."

The path graph P_(s+1) is s-transitive (Holton and Sheehan 1993, p. 203), and a cycle graph C_n (n>=3) is infty-transitive (Holton and Sheehan 1993, pp. 204 and 209, Exercise 6).

If G is an s-transitive graph, then nG is also s-transitive for any n>=1 (Holton and Sheehan 1993, p. 204). But if G is disconnected and not the union of n copies of a single type of graph, then it is not vertex-transitive and hence not arc-transitive. Disconnected graphs therefore either have the same s-transitivity as their identical connected components, or are not arc-transitive (if their components are not identical). The s-transitivity of disconnected graphs is therefore trivial.

In 1947, Tutte showed that for any strictly s-transitive connected cubic graph, s<=5 (Holton and Sheehan 1993, p. 207; Harary 1994, p. 175; Godsil and Royle 2001, p. 63). Weiss (1974) subsequently established the very deep result that for any regular connected strictly s-transitive graph of degree r>=3s<=5 or s=7 (Holton and Sheehan 1993, p. 208; Godsil and Royle 2001, p. 63).

If X is a vertex-transitive cubic graph on n vertices and G is its automorphism group, then if 3 divides the order of the stabilizer G_u of a vertex u, then X is arc-transitive (Godsil and Royle 2001, p. 75).

Arc-TransitiveGraphs

Because there are no s-transitive cubic graphs for s>5, there are also no strictly s-transitive ones (Harary 1994, p. 175). The 3-cages are strictly s-transitive for 3<=s<=7 (Harary 1994, p. 175), but there also exist strictly s-transitive graphs for s<=5 which are not cage graphs (Harary 1994, p. 175). These include the strictly 1-transitive graph of girth 12 on 432 nodes discovered by Frucht (1952) constructed as the Cayley graph of the permutations (2, 1, 5, 8, 3, 6, 7, 4, 9), (3, 6, 1, 4, 9, 2, 7, 8, 5), and (4, 3, 2, 1, 5, 7, 6, 8, 9) and now more commonly known as the cubic symmetric graph F_(432)C; the strictly 2-transitive cubical, dodecahedral graphs, Möbius-Kantor graph GP(8,3), and Nauru graph; and the strictly 3-transitive Desargues graph GP(10,3) (Coxeter 1950). Some strictly s-transitive graphs are illustrated above and summarized in the table below (partially based on the tables given by Coxeter 1950 and Harary 1994, p. 175).

s V d graph
1 432 3 cubic symmetric graph F_(432)C
2 4 3 tetrahedral graph K_k
2 8 3 cubical graph Q_3
2 16 3 Möbius-Kantor graph
2 16 4 tesseract graph Q_4
2 20 3 dodecahedral graph
2 24 3 Nauru graph
2 32 5 5-hypercube graph Q_5
2 32 6 Kummer graph
2 64 6 6-hypercube graph Q_6
2 128 7 7-hypercube graph Q_7
2 256 8 8-hypercube graph Q_8
3 6 3 utility graph K_(3,3)
3 20 3 Desargues graph
4 14 3 Heawood graph
5 30 3 Levi graph

REFERENCES

Bouwer, Z. "Vertex and Edge Transitive, But Not 1-Transitive Graphs." Canad. Math. Bull. 13, 231-237, 1970.

Conder, M. and Nedela, R. "Symmetric Cubic Graphs of Small Girth." J. Combin. Th. Ser. B 97, 757-768, 2007.

Conder, M. "All Symmetric Graphs of Order 2 to 30." Apr. 2014. https://www.math.auckland.ac.nz/~conder/symmetricgraphs-orderupto30.txt.

Coxeter, H. S. M. "Self-Dual Configurations and Regular Graphs." Bull. Amer. Math. Soc. 56, 413-455, 1950.

Doyle, P. G. On Transitive Graphs. Senior Thesis. Cambridge, MA, Harvard College, April 1976.

Doyle, P. "A 27-Vertex Graph That Is Vertex-Transitive and Edge-Transitive But Not L-Transitive." October 1998. http://hilbert.dartmouth.edu/~doyle/docs/bouwer/bouwer/bouwer.html.Frucht, R. "A One-Regular Graph of Degree Three." Canad. J. Math. 4, 240-247, 1952.

Gardiner, A. "Arc Transitivity in Graphs." Quart. J. Math. 24, 399-407, 1973.

Gardiner, A. "Arc Transitivity in Graphs II." Quart. J. Math. 25, 163-167, 1974.

Gardiner, A. "Arc Transitivity in Graphs III." Quart. J. Math. 27, 313-323, 1976.Godsil, C. and Royle, G. "Arc-Transitive Graphs." Ch. 4 in Algebraic Graph Theory. New York: Springer-Verlag, pp. 59-76, 2001.

Harary, F. Graph Theory. Reading, MA: Addison-Wesley, pp. 174-175 and 200, 1994.

Holt, D. F. "A Graph Which Is Edge Transitive But Not Arc Transitive." J. Graph Th. 5, 201-204, 1981.

Holton, D. A. and Sheehan, J. The Petersen Graph. Cambridge, England: Cambridge University Press, pp. 202-210, 1993.

Lauri, J. and Scapellato, R. Topics in Graph Automorphisms and Reconstruction. Cambridge, England: Cambridge University Press, 2003.

Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 162 and 174, 1990.

Sloane, N. J. A. Sequences A180240 and A286280 in "The On-Line Encyclopedia of Integer Sequences."Tutte, W. T. "A Family of Cubical Graphs." Proc. Cambridge Philos. Soc. 43, 459-474, 1947.T

utte, W. T. Connectivity in Graphs. Toronto, CA: University of Toronto Press, 1966.Weiss, R. M. "Über s-reguläre Graphen." J. Combin. Th. Ser. B 16, 229-233, 1974.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.