Read More
Date: 30-3-2022
1600
Date: 1-4-2022
1521
Date: 24-3-2022
1624
|
Let , , ..., be a -graph edge coloring of the complete graph , where for each , 2, ..., t, is the spanning subgraph of consisting of all graph edges colored with the th color. The irredundant Ramsey number is the smallest integer such that for any -graph edge coloring of , the graph complement has an irredundant set of size for at least one , ..., . Irredundant Ramsey numbers were introduced by Brewster et al. (1989) and satisfy
For a summary, see Mynhardt (1992).
bounds | reference | |
6 | Brewster et al. 1989 | |
8 | Brewster et al. 1989 | |
12 | Brewster et al. 1989 | |
15 | Brewster et al. 1990 | |
18 | Chen and Rousseau 1995, Cockayne et al. 1991 | |
13 | Cockayne et al. 1992 | |
13 | Cockayne and Mynhardt 1994 |
Brewster, R. C.; Cockayne, E. J.; and Mynhardt, C. M. "Irredundant Ramsey Numbers for Graphs." J. Graph Theory 13, 283-290, 1989.
Brewster, R. C.; Cockayne, E. J.; and Mynhardt, C. M. "The Irredundant Ramsey Number ." Quaest. Math. 13, 141-157, 1990.
Chen, G. and Rousseau, C. C. "The Irredundant Ramsey Number ." J. Graph. Th. 19, 263-270, 1995.
Cockayne, E. J.; Exoo, G.; Hattingh, J. H.; and Mynhardt, C. M. "The Irredundant Ramsey Number ." Util. Math. 41, 119-128, 1992.
Cockayne, E. J.; Hattingh, J. H.; and Mynhardt, C. M. "The Irredundant Ramsey Number ." Util. Math. 39, 145-160, 1991.
Cockayne, E. J. and Mynhardt, C. M. "The Irredundant Ramsey Number ." J. Graph Th. 18, 595-604, 1994.
Hattingh, J. H. "On Irredundant Ramsey Numbers for Graphs." J. Graph Th. 14, 437-441, 1990.Mynhardt, C. M. "Irredundant Ramsey Numbers for Graphs: A Survey." Congres. Numer. 86, 65-79, 1992.
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
المجمع العلمي للقرآن الكريم يقيم جلسة حوارية لطلبة جامعة الكوفة
|
|
|