المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

سروريزيد (لعنه الله)
4-10-2017
هل للحشرات نفس حواس الإنسان؟
9-2-2021
ماهية العلاقات الدولية
22-1-2022
صيام بعض أيّام الشهر.
2023-11-01
التفرق الشاذ anomalous dispersion
14-11-2017
الأحماض الدهنية هي أحماض كربوكسيلية أليفاتية
24-7-2021

Melnikov-Arnold Integral  
  
1185   04:07 مساءً   date: 11-9-2021
Author : Chirikov, B. V.
Book or Source : "A Universal Instability of Many-Dimensional Oscillator Systems." Phys. Rep. 52
Page and Part : 264-379


Read More
Date: 4-10-2021 1613
Date: 31-8-2021 1645
Date: 22-8-2021 1830

Melnikov-Arnold Integral

 A_m(lambda)=int_(-infty)^inftycos[1/2mphi(t)-lambdat]dt,

(1)

where the function

 phi(t)=4tan^(-1)(e^t)-pi

(2)

describes the motion along the pendulum separatrix. Chirikov (1979) has shown that this integral has the approximate value

 A_m(lambda) approx {(4pi(2lambda)^(m-1))/(Gamma(m))e^(-pilambda/2)   for lambda>0; -(4e^(-pi|lambda|/2))/((2|l|)^(m+1))Gamma(m+1)sin(pim)   for lambda<0.

(3)


REFERENCES:

Chirikov, B. V. "A Universal Instability of Many-Dimensional Oscillator Systems." Phys. Rep. 52, 264-379, 1979.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.