المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية
آخر المواضيع المضافة

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية

عثمان بن عيسى بن منصور ابن محمد البلطي
26-06-2015
التصنيف العام لأنواع النقل
22-4-2019
المخاطبون بالصيام
2025-02-11
يحدث التحفيز عند المقر الفعال
7-6-2021
الهجرة الى المدينة
7-11-2017
مصدر طاقة الرياح
14-7-2021

Seifert Surface  
  
1190   03:24 مساءً   date: 26-6-2021
Author : Adams, C. C.
Book or Source : The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman
Page and Part : ...


Read More
Date: 10-7-2021 1326
Date: 6-7-2021 2144
Date: 3-8-2021 1552

Seifert Surface

An orientable surface with one boundary component such that the boundary component of the surface is a given knot K. In 1934, Seifert proved that such a surface can be constructed for any knot. The process of generating this surface is known as Seifert's algorithm. Applying Seifert's algorithm to an alternating projection of an alternating knot yields a Seifert surface of minimal knot genus.

There are knots for which the minimal genus Seifert surface cannot be obtained by applying Seifert's algorithm to any projection of that knot, as proved by Morton in 1986 (Adams 1994, p. 105).


REFERENCES:

Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 95-106, 1994.

Seifert, H. "Über das Geschlecht von Knotten." Math. Ann. 110, 571-592, 1934.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.