Read More
Date: 4-7-2017
![]()
Date: 10-8-2021
![]()
Date: 10-5-2021
![]() |
If is a simple closed curve in
, then the Jordan curve theorem, also called the Jordan-Brouwer theorem (Spanier 1966) states that
has two components (an "inside" and "outside"), with
the boundary of each.
The Jordan curve theorem is a standard result in algebraic topology with a rich history. A complete proof can be found in Hatcher (2002, p. 169), or in classic texts such as Spanier (1966). Recently, a proof checker was used by a Japanese-Polish team to create a "computer-checked" proof of the theorem (Grabowski 2005).
REFERENCES:
Fulton, W. Algebraic Topology: A First Course. New York: Springer-Verlag, p. 68, 1995.
Grabowski, A. "Culmination of a Complete Proof of the Jordan Curve Theorem." 2005. https://markun.cs.shinshu-u.ac.jp/mizar/jordan/jordancurve-e.html.
Hatcher, A. Algebraic Topology. Cambridge, England: Cambridge University Press, 2002. https://www.math.cornell.edu/~hatcher/AT/ATpage.html.
Knopp, K. Theory of Functions Parts I and II, Two Volumes Bound as One, Part I. New York: Dover, p. 14, 1996.
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or Perish Press, p. 9, 1976.
Spanier, E. H. Algebraic Topology. New York: McGraw-Hill, 1966.
|
|
"إنقاص الوزن".. مشروب تقليدي قد يتفوق على حقن "أوزيمبيك"
|
|
|
|
|
الصين تحقق اختراقا بطائرة مسيرة مزودة بالذكاء الاصطناعي
|
|
|
|
|
قسم شؤون المعارف ووفد من جامعة البصرة يبحثان سبل تعزيز التعاون المشترك
|
|
|