Read More
Date: 15-5-2021
![]()
Date: 22-6-2021
![]()
Date: 25-7-2021
![]() |
A diagram lemma which states that, given the commutative diagram of additive Abelian groups with exact rows, the following holds:
1. If is surjective, and
and
are injective, then
is injective;
2. If is injective, and
and
are surjective, then
is surjective.
If and
are bijective, the hypotheses of (1) and (2) are satisfied simultaneously, and the conclusion is that
is bijective. This statement is known as the Steenrod five lemma.
If ,
,
, and
are the zero group, then
and
are zero maps, and thus are trivially injective and surjective. In this particular case the diagram reduces to that shown above. It follows from (1), respectively (2), that
is injective (or surjective) if
and
are. This weaker statement is sometimes referred to as the "short five lemma."
REFERENCES:
Eilenberg, S. and Steenrod, N. Foundations of Algebraic Topology. Princeton, NJ: Princeton University Press, p. 16, 1952.
Fulton, W. Algebraic Topology: A First Course. New York: Springer-Verlag, pp. 346-347, 1995.
Lang, S. Algebra, rev. 3rd ed. New York: Springer Verlag, p. 169, 2002.
Mac Lane, S. Homology. Berlin: Springer-Verlag, p. 14, 1967.
Mitchell, B. Theory of Categories. New York: Academic Press, pp. 35-36, 1965.
Munkres, J. R. Elements of Algebraic Topology. New York: Perseus Books Pub., p. 140, 1993.
Rotman, J. J. An Introduction to Algebraic Topology. New York: Springer-Verlag, pp. 98-99, 1988.
Spanier, E. H. Algebraic Topology. New York: McGraw-Hill, pp. 185-186, 1966.
|
|
4 أسباب تجعلك تضيف الزنجبيل إلى طعامك.. تعرف عليها
|
|
|
|
|
أكبر محطة للطاقة الكهرومائية في بريطانيا تستعد للانطلاق
|
|
|
|
|
العتبة العباسية المقدسة تبحث مع العتبة الحسينية المقدسة التنسيق المشترك لإقامة حفل تخرج طلبة الجامعات
|
|
|