What is noninvasive prenatal testing (NIPT) and what disorders can it screen for |
1958
03:41 مساءً
date: 28-10-2020
|
Read More
Date: 13-12-2015
1961
Date: 5-3-2021
2212
Date: 19-4-2021
1707
|
What is noninvasive prenatal testing (NIPT) and what disorders can it screen for?
Noninvasive prenatal testing (NIPT), sometimes called noninvasive prenatal screening (NIPS), is a method of determining the risk that the fetus will be born with certain genetic abnormalities. This testing analyzes small fragments of DNA that are circulating in a pregnant woman’s blood. Unlike most DNA, which is found inside a cell’s nucleus, these fragments are free-floating and not within cells, and so are called cell-free DNA (cfDNA). These small fragments usually contain fewer than 200 DNA building blocks (base pairs) and arise when
cells die off and get broken down and their contents , including DNA, are released into the bloodstream.
During pregnancy, the mother’s bloodstream contains a mix of cfDNA that comes from her cells and cells from the placenta. The placenta is tissue in the uterus that links the fetus and the mother’s blood supply. These cells are shed into the mother’s bloodstream throughout pregnancy. The DNA in placental cells is usually identical to the DNA of the fetus. Analyzing cfDNA from the placenta provides an opportunity for early detection of certain genetic abnormalities without harming the fetus.
NIPT is most often used to look for chromosomal disorders that are caused by the presence of an extra or missing copy (aneuploidy ) of a chromosome. NIPT primarily looks for Down syndrome (trisomy 21, caused by an extra chromosome 21), trisomy 18 (caused by an extra chromosome 18), trisomy 13 (caused by an extra chromosome 13), and extra or missing copies of the X chromosome and Y chromosome (the sex chromosomes). The accuracy of the test varies by disorder.
NIPT may include screening for additional chromosomal disorders that are caused by missing (deleted) or copied (duplicated) sections of a chromosome. NIPT is beginning to be used to test for genetic disorders that are caused by changes (variants) in single genes. As technology improves and the cost of genetic testing decreases, researchers expect that NIPT will become
available for many more genetic conditions.
NIPT is considered noninvasive because it requires drawing blood only from the pregnant woman and does not pose any risk to the fetus. NIPT is a screening test, which means that it will not give a definitive answer about whether or not a fetus has a genetic condition. The test can only estimate whether the risk of having certain conditions is increased or decreased. In some cases, NIPT results indicate an increased risk for a genetic abnormality when the fetus is actually unaffected (false positive), or the results indicate a decreased risk for a genetic abnormality when the fetus is actually affected (false negative). Because NIPT analyzes both fetal and maternal cfDNA, the test may detect a genetic condition in the mother.
There must be enough fetal cfDNA in the mother’s bloodstream to be able to identify fetal chromosome abnormalities. The proportion of cfDNA in maternal blood that comes from the placenta is known as the fetal fraction. Generally, the fetal fraction must be above 4 percent, which typically occurs around the tenth week of pregnancy. Low fetal fractions can lead to an inability to perform the test or a false negative result. Reasons for low fetal fractions include testing too early in the pregnancy, sampling errors, maternal obesity, and fetal abnormality.
There are multiple NIPT methods to analyze fetal cfDNA. To determine chromosomal aneuploidy, the most common method is to count all cfDNA fragments (both fetal and maternal). If the percentage of cfDNA fragments from each chromosome is as expected, then the fetus has a decreased risk of having a chromosomal condition (negative test result). If the percentage of cfDNA fragments from a particular chromosome is more than expected, then the fetus has an increased likelihood of having a trisomy condition (positive test result). A positive screening result indicates that further testing (called diagnostic testing , because it is used to diagnose a disease) should be performed to confirm the result.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
العتبة الحسينية تحقق نسب إنجاز متقدمة بمشروع مياه الشرب في المناطق القريبة من الحرم الحسيني
|
|
|