Read More
Date: 14-4-2020
![]()
Date:
![]()
Date: 25-11-2020
![]() |
The Littlewood conjecture states that for any two real numbers ,
![]() |
where denotes the nearest integer function.
In layman's terms, this conjecture concerns the simultaneous approximation of two real numbers by rationals, indeed saying that any two real numbers and
can be simultaneously approximated at least moderately well by rationals having the same denominator (Venkatesh 2007).
Though proof of the Littlewood conjecture still remains an open problem, many partial results exist. For example, Borel showed that the set of exceptional pairs of real numbers
and
for which the conjecture fails has Lebesgue measure zero. Much later, Einsiedler et al. (2006) proved that the set of pairs of exceptional points also has Hausdorff dimension zero.
REFERENCES:
Einsiedler, M.; Katok, A.; and Lindenstrauss, E. "Invariant Measures and the Set of Exceptions to Littlewood's Conjecture." Ann. Math. 164, 513-560, 2006.
Venkatesh, A. "The Work of Einsiedler, Katok, and Lindenstrauss on the Littlewood Conjecture." Bull. Amer. Math. Soc., 45, 117-134, 2008.
|
|
لخفض ضغط الدم.. دراسة تحدد "تمارين مهمة"
|
|
|
|
|
طال انتظارها.. ميزة جديدة من "واتساب" تعزز الخصوصية
|
|
|
|
|
مشاتل الكفيل تزيّن مجمّع أبي الفضل العبّاس (عليه السلام) بالورد استعدادًا لحفل التخرج المركزي
|
|
|