Read More
Date: 27-10-2020
![]()
Date: 31-1-2020
![]()
Date: 17-10-2019
![]() |
For , let
and
be integers with
such that the Euclidean algorithm applied to
and
requires exactly
division steps and such that
is as small as possible satisfying these conditions. Then
and
, where
is a Fibonacci number (Knuth 1998, p. 343).
Furthermore, the number of steps in the Euclidean algorithm never exceeds 5 times the number of digits in the smaller number. In fact, the bound 5 can be further reduced to , where
is the golden ratio.
REFERENCES:
Honsberger, R. "A Theorem of Gabriel Lamé." Ch. 7 in Mathematical Gems II. Washington, DC: Math. Assoc. Amer., pp. 54-57, 1976.
Knuth, D. E. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 3rd ed. Reading, MA: Addison-Wesley, 1998.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|