المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
نيماتودا حوصلات الحبوب Heterodera avenae
2025-04-07
السلام عليك يا داعيَ الله وربانيَّ آياته
2025-04-07
سلامٌ على آل ياسين
2025-04-07
التوجه إلى الله بأهل البيت ( عليهم السلام ) والتوجه إليهم
2025-04-07
تفريعات / القسم الثاني عشر
2025-04-06
تفريعات / القسم الحادي عشر
2025-04-06

زياد بن أبي سلمة
5-9-2017
المظهر التكويني للمراوح الفيضية
27-8-2019
آداب الحديث / ترك الهذر والثرثرة.
2023-03-30
معدل الفائدة الحقيقي Effective Rate
16-12-2015
مسار سلامة الخلية Cell Integrity Pathway
13-10-2017
Five Lemma
10-5-2021

Havercosine  
  
1813   12:50 صباحاً   date: 10-10-2019
Author : المرجع الالكتروني للمعلوماتيه
Book or Source : المرجع الالكتروني للمعلوماتيه
Page and Part : ...


Read More
Date: 1806
Date: 25-4-2019 2023
Date: 12-8-2018 1962

Havercosine

The havercosine, also called the haversed cosine, is a little-used trigonometric function defined by

havercosz = vercosz

(1)

= 1/2(1+cosz),

(2)

where vercosz is the vercosine and cosz is the cosine.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.