المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27

Multipolar Neurons
4-8-2016
فسيولوجيا صفات الجودة في الطماطم
16-10-2020
Diphthongs RP closing diphthongs
2024-05-10
تشكل قمم الجليد
8-2-2018
موانع الارتباط بالله تعالى / الذنوب واتباع الهوى.
7/11/2022
التحدي القرآن بالبلاغة
19-09-2014

Riemann-Liouville Operator  
  
1745   02:10 مساءً   date: 12-8-2018
Author : Miller, K. S. and Ross
Book or Source : B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: Wiley, 1993.
Page and Part : ...


Read More
Date: 22-5-2019 1192
Date: 9-10-2019 1434
Date: 19-9-2018 1688

Riemann-Liouville Operator

The operator of fractional integration is defined as

 _aD_t^(-nu)f(t)=1/(Gamma(nu))int_a^tf(u)(t-u)^(nu-1)du

for nu>0 with _aD_t^0f(t)=f(t) (Oldham and Spanier 1974, Miller and Ross 1993, Srivastava and Saxena 2001, Saxena 2002).


REFERENCES:

Miller, K. S. and Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: Wiley, 1993.

Oldham, K. B. and Spanier, J. The Fractional Calculus: Integrations and Differentiations of Arbitrary Order. New York: Academic Press, 1974.

Saxena, R. K.; Mathai, A. M.; and Haubold, H. J. "On Fractional Kinetic Equations." 23 Jun 2002. http://arxiv.org/abs/math.CA/0206240.

Srivastava, H. M. and Saxena, R. K. "Operators of Fractional Integration and Their Applications." Appl. Math. and Comput. 118, 1-52, 2001.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.