Read More
Date: 3-6-2019
1536
Date: 20-6-2019
1320
Date: 18-7-2019
1700
|
The Gegenbauer polynomials are solutions to the Gegenbauer differential equation for integer . They are generalizations of the associated Legendre polynomials to -D space, and are proportional to (or, depending on the normalization, equal to) the ultraspherical polynomials .
Following Szegö, in this work, Gegenbauer polynomials are given in terms of the Jacobi polynomials with by
(1) |
(Szegö 1975, p. 80), thus making them equivalent to the Gegenbauer polynomials implemented in the Wolfram Language as GegenbauerC[n, lambda, x]. These polynomials are also given by the generating function
(2) |
The first few Gegenbauer polynomials are
(3) |
|||
(4) |
|||
(5) |
|||
(6) |
In terms of the hypergeometric functions,
(7) |
|||
(8) |
|||
(9) |
They are normalized by
(10) |
for .
Derivative identities include
(11) |
|||
(12) |
|||
(13) |
|||
(14) |
|||
(15) |
|||
(16) |
|||
(17) |
|||
(18) |
(Szegö 1975, pp. 80-83).
A recurrence relation is
(19) |
for , 3, ....
Special double- formulas also exist
(20) |
|||
(21) |
|||
(22) |
|||
(23) |
Koschmieder (1920) gives representations in terms of elliptic functions for and .
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). "Orthogonal Polynomials." Ch. 22 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 771-802, 1972.
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, p. 643, 1985.
Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. Higher Transcendental Functions, Vol. 2. New York: Krieger, p. 175, 1981.
Infeld, L. and Hull, T. E. "The Factorization Method." Rev. Mod. Phys. 23, 21-68, 1951.
Iyanaga, S. and Kawada, Y. (Eds.). "Gegenbauer Polynomials (Gegenbauer Functions)." Appendix A, Table 20.I in Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, pp. 1477-1478, 1980.
Koekoek, R. and Swarttouw, R. F. "Gegenbauer / Ultraspherical." §1.8.1 in The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its -Analogue. Delft, Netherlands: Technische Universiteit Delft, Faculty of Technical Mathematics and Informatics Report 98-17, pp. 40-41, 1998.
Koschmieder, L. "Über besondere Jacobische Polynome." Math. Zeitschrift 8, 123-137, 1920.
Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 547-549 and 600-604, 1953.
Roman, S. "A Particular Delta Series and the Gegenbauer Polynomials." §6.3 in The Umbral Calculus. New York: Academic Press, pp. 166-174, 1984.
Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., 1975.
Zwillinger, D. Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, pp. 122-123, 1997.
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
المجمع العلمي للقرآن الكريم يقيم جلسة حوارية لطلبة جامعة الكوفة
|
|
|