Read More
Date: 15-5-2018
![]()
Date: 25-5-2019
![]()
Date: 12-10-2019
![]() |
The elliptic logarithm is generalization of integrals of the form
![]() |
for real, which can be expressed in terms of logarithmic and inverse trigonometric functions, to
![]() |
for and
real. This integral can be done analytically, but has a complicated form involving incomplete elliptic integrals of the first kind with complex parameters. The plots above show the special case
.
The elliptic logarithm is implemented in the Wolfram Language as EllipticLog[x, y
,
a, b
], where
is an unfortunate and superfluous parameter that must be set to either
or
and which multiplies the above integral by a factor of
.
The inverse of the elliptic logarithm is the elliptic exponential function.
REFERENCES:
Wolfram, S. The Mathematica Book, 5th ed. Champaign, IL: Wolfram Media, p. 788, 2003.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|