تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Jack Polynomial
المؤلف:
Dumitriu, I.; Edelman, A.; and Shuman, G.
المصدر:
"MOPS: Multivariate Orthogonal Polynomials (Symbolically)." Preprint. March 26
الجزء والصفحة:
...
28-7-2019
1354
Jack Polynomial
The Jack polynomials are a family of multivariate orthogonal polynomials dependent on a positive parameter . Orthogonality of the Jack polynomials is proved in Macdonald (1995, p. 383). The Jack polynomials have a rich history, and special cases of
have been studied more extensively than others (Dumitriu et al. 2004). The following table summarizes some of these special cases.
![]() |
special polynomial |
![]() |
quaternion zonal polynomial |
1 | Schur polynomial |
2 | zonal polynomial |
Jack (1969-1970) originally defined the polynomials that eventually became associated with his name while attempting to evaluate an integral connected with the noncentral Wishart distribution (James 1960, Hua 1963, Dumitriu et al. 2004). Jack noted that the case were the Schur polynomials, and conjectured that
were the zonal polynomials. The question of finding a combinatorial interpretation for the polynomials was raised by Foulkes (1974), and subsequently answered by Knop and Sahi (1997). Later authors then generalized many known properties of the Schur and zonal polynomials to Jack polynomials (Stanley 1989, Macdonald 1995). Jack polynomials are especially useful in the theory of random matrices (Dumitriu et al. 2004).
The Jack polynomials generalize the monomial scalar functions , which is orthogonal over the unit circle
in the complex plane with weight function unity
. The interval for the
-multivariate Jack polynomials
can therefore be thought of as an
-dimensional torus (Dumitriu et al. 2004).
The Jack polynomials have several equivalent definitions (up to certain normalization constraints), and three common normalizations ("C," "J," and "P"). The "J" normalization makes the coefficient of the lowest-order monomial equal to exactly
, while the "P" normalization is monic.
Letting denote
, the first few Jack "J" polynomials are given by
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
(Dumitriu et al. 2004).
Let be a partition, then the Jack polynomials
can be defined as the functions that are orthogonal with respect to the inner product
![]() |
(7) |
where is the Kronecker delta and
, with
the number of occurrences of
in
(Macdonald 1995, Dumitriu et al. 2004).
The Jack polynomial is the only homogeneous polynomial eigenfunction of the Laplace-Beltrami-type operator
![]() |
(8) |
with eigenvalue having highest-order term corresponding to
(Muirhead 1982, Dumitriu 2004). Here,
![]() |
(9) |
and is a partition of
and
is the number of variables.
REFERENCES:
Dumitriu, I.; Edelman, A.; and Shuman, G. "MOPS: Multivariate Orthogonal Polynomials (Symbolically)." Preprint. March 26, 2004.
Foulkes, H. O. "A Survey of Some Combinatorial Aspects of Symmetric Functions." In Permutations. Paris: Gauthier-Villars, 1974.
Hua, L. K. Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Providence, RI: Amer. Math. Soc., 1963.
Jack, H. "A Class of Symmetric Polynomials with a Parameter." Proc. Roy. Soc. Edinburgh Sec. A: Math. Phys. Sci. 69, 1-18, 1969-70.
James, A. T. "The Distribution of the Latent Roots of the Covariance Matrix." Ann. Math. Stat. 31, 151-158, 1960.
James, A. T. "Distribution of Matrix Variates and Latent Roots Derived from Normal Samples." Ann. Math. Stat. 35, 475-501, 1964.
Kadell, K. "The Selberg-Jack Polynomials." Adv. Math. 130, 33-102, 1997.
Knop, F. and Sahi, S. "A Recursion and a Combinatorial Formula for the Jack Polynomials." Invent. Math. 128, 9-22, 1997.
Lasalle, M. "Some Combinatorial Conjectures for Jack Polynomials." Ann. Combin. 2, 61-83, 1998.
Macdonald, I. G. Symmetric Functions and Hall Polynomials, 2nd ed. Oxford, England: Oxford University Press, pp. 383 and 387, 1995.
Muirhead, R. J. Aspects of Multivariate Statistical Theory. New York: Wiley, 1982.
Stanley, R. P. "Some Combinatorial Properties of Jack Symmetric Functions." Adv. in Math. 77, 76-115, 1989.
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
