Jinc Function
المؤلف:
Bracewell, R.
المصدر:
The Fourier Transform and Its Applications, 3rd ed. New York: McGraw-Hill
الجزء والصفحة:
...
25-3-2019
1569
Jinc Function



The jinc function is defined as
 |
(1)
|
where
is a Bessel function of the first kind, and satisfies
. The derivative of the jinc function is given by
 |
(2)
|
The function is sometimes normalized by multiplying by a factor of 2 so that
(Siegman 1986, p. 729).
The first real inflection point of the function occurs when
 |
(3)
|
namely 2.29991033... (OEIS A133920).
The unique real fixed point occurs at 0.48541702373... (OEIS A133921).
REFERENCES:
Bracewell, R. The Fourier Transform and Its Applications, 3rd ed. New York: McGraw-Hill, p. 64, 1999.
Siegman, A. E. Lasers. Sausalito, CA: University Science Books, 1986.
Sloane, N. J. A. Sequences A133920 and A133921 in "The On-Line Encyclopedia of Integer Sequences."
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة