Read More
Date: 31-8-2019
2147
Date: 28-8-2018
2025
Date: 25-4-2019
2235
|
Suppose is a function of that is twice differentiable at a stationary point .
1. If , then has a local minimum at .
2. If , then has a local maximum at .
The extremum test gives slightly more general conditions under which a function with is a maximum or minimum.
If is a two-dimensional function that has a local extremum at a point and has continuous partial derivatives at this point, then and . The second partial derivatives test classifies the point as a local maximum or local minimum.
Define the second derivative test discriminant as
(1) |
|||
(2) |
Then
1. If and , the point is a local minimum.
2. If and , the point is a local maximum.
3. If , the point is a saddle point.
4. If , higher order tests must be used.
REFERENCES:
Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 14, 1972.
Thomas, G. B. Jr. and Finney, R. L. "Maxima, Minima, and Saddle Points." §12.8 in Calculus and Analytic Geometry, 8th ed. Reading, MA: Addison-Wesley, pp. 881-891, 1992.
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
المجمع العلمي للقرآن الكريم يقيم جلسة حوارية لطلبة جامعة الكوفة
|
|
|