Read More
Date: 17-9-2018
![]()
Date: 18-7-2019
![]()
Date: 23-9-2019
![]() |
The Lerch transcendent is generalization of the Hurwitz zeta function and polylogarithm function. Many sums of reciprocal powers can be expressed in terms of it. It is classically defined by
![]() |
(1) |
for and
,
, .... It is implemented in this form as HurwitzLerchPhi[z, s, a] in the Wolfram Language.
The slightly different form
![]() |
(2) |
sometimes also denoted , for
(or
and
) and
,
,
, ..., is implemented in the Wolfram Language as LerchPhi[z, s, a]. Note that the two are identical only for
.
A series formula for valid on a larger domain in the complex
-plane is given by
![]() |
(3) |
which holds for all complex and complex
with
(Guillera and Sondow 2005).
The Lerch transcendent can be used to express the Dirichlet beta function
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
A special case is given by
![]() |
(6) |
(Guillera and Sondow 2005), where is the polylogarithm.
Special cases giving simple constants include
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
![]() |
![]() |
![]() |
(9) |
![]() |
![]() |
![]() |
(10) |
where is Catalan's constant,
is Apéry's constant, and
is the Glaisher-Kinkelin constant (Guillera and Sondow 2005).
It gives the integrals of the Fermi-Dirac distribution
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
where is the gamma function and
is the polylogarithm and Bose-Einstein distribution
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
Double integrals involving the Lerch transcendent include
![]() |
(15) |
where is the gamma function. These formulas lead to a variety of beautiful special cases of unit square integrals (Guillera and Sondow 2005).
It also can be used to evaluate Dirichlet L-series.
REFERENCES:
Erdélyi, A.; Magnus, W.; Oberhettinger, F.; and Tricomi, F. G. "The Function ." §1.11 in Higher Transcendental Functions, Vol. 1. New York: Krieger, pp. 27-31, 1981.
Gradshteyn, I. S. and Ryzhik, I. M. "The Lerch Function ." §9.55 in Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, p. 1029, 2000.
Guillera, J. and Sondow, J. "Double Integrals and Infinite Products for Some Classical Constants Via Analytic Continuations of Lerch's Transcendent." 16 June 2005 http://arxiv.org/abs/math.NT/0506319.
|
|
4 أسباب تجعلك تضيف الزنجبيل إلى طعامك.. تعرف عليها
|
|
|
|
|
أكبر محطة للطاقة الكهرومائية في بريطانيا تستعد للانطلاق
|
|
|
|
|
العتبة العباسية المقدسة تبحث مع العتبة الحسينية المقدسة التنسيق المشترك لإقامة حفل تخرج طلبة الجامعات
|
|
|