 
					
					
						Enlargement					
				 
				
					
						 المؤلف:  
						Gehrke, M.; Kaiser, K.; and Insall, M.
						 المؤلف:  
						Gehrke, M.; Kaiser, K.; and Insall, M.					
					
						 المصدر:  
						"Some Nonstandard Methods Applied to Distributive Lattices." Zeitschrifte für Mathematische Logik und Grundlagen der Mathematik 36
						 المصدر:  
						"Some Nonstandard Methods Applied to Distributive Lattices." Zeitschrifte für Mathematische Logik und Grundlagen der Mathematik 36					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 13-2-2022
						13-2-2022
					
					
						 2393
						2393					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Enlargement
In geometry, the term "enlargement" is a synonym for expansion.
In nonstandard analysis, let  be a set of urelements, and let
 be a set of urelements, and let  be the superstructure with individuals in
 be the superstructure with individuals in  :
:
1.  ,
,
2.  ,
,
3.  .
.
Let  be a superstructure monomorphism, with
 be a superstructure monomorphism, with  and
 and  for
 for  . Then
. Then  is an enlargement of
 is an enlargement of  provided that for each set
 provided that for each set  in
 in  , there is a hyperfinite set
, there is a hyperfinite set  that contains all the standard entities of
 that contains all the standard entities of  .
.
It is the case that  is an enlargement of
 is an enlargement of  if and only if every concurrent binary relation
 if and only if every concurrent binary relation  satisfies the following: There is an element
 satisfies the following: There is an element  of the range of
 of the range of  such that for every
 such that for every  in the domain of
 in the domain of  , the pair
, the pair  is in the relation
 is in the relation  .
.
REFERENCES
Gehrke, M.; Kaiser, K.; and Insall, M. "Some Nonstandard Methods Applied to Distributive Lattices." Zeitschrifte für Mathematische Logik und Grundlagen der Mathematik 36, 123-131, 1990.
Gonshor, H. "Enlargements Contain Various Kinds of Completions". In Proc. 1972 Victoria Symposium on Nonstandard Analysis. New York: Springer-Verlag, pp. 60-70, 1974.
Gonshor, H. "Enlargements of Boolean Algebras and Stone Spaces". Fund. Math. 100, 35-59, 1978.
Hurd, A. E. and Loeb, P. A. An Introduction to Nonstandard Real Analysis. Orlando, FL: Academic Press, 1985.I
nsall, M. "Some Finiteness Conditions in Lattices Using Nonstandard Proof Methods." J. Austral. Math. Soc. 53, 266-280, 1992.I
nsall, M. "Geometric Conditions for Local Finiteness of a Lattice of Convex Sets." Math. Moravica 1, 35-40, 1997.
Insall, M. "Nonstandard Methods and Finiteness Conditions in Algebra." Zeitschr. f. Math., Logik, und Grundlagen d. Math. 37, 525-532, 1991.
Luxemburg, W. A. J. Applications of Model Theory to Algebra, Analysis, and Probability. New York: Holt, Rinehart, and Winston, 1969.
Robinson, A. Nonstandard Analysis. Amsterdam, Netherlands: North-Holland, 1966.Robinson, A. "Germs." In Applications of Model Theory to Algebra, Analysis and Probability (International Sympos., Pasadena, Calif., 1967).
Schmid, J. "Completing Boolean Algebras by Nonstandard Methods." Zeitschr. für Math. Logik u. Grundlagen der Mathematik 20, 47-48, 1974.
Schmid, J. "Nonstandard Constructions for Join-Extensions of Lattices." Houston J. Math. 3, 423-439, 1977.
				
				
					
					 الاكثر قراءة في  المنطق
					 الاكثر قراءة في  المنطق					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة