 
					
					
						Russell,s Antinomy					
				 
				
					
						 المؤلف:  
						Curry, H. B.
						 المؤلف:  
						Curry, H. B.					
					
						 المصدر:  
						Foundations of Mathematical Logic, 2nd rev. ed. New York: Dover,
						 المصدر:  
						Foundations of Mathematical Logic, 2nd rev. ed. New York: Dover,					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 17-2-2022
						17-2-2022
					
					
						 1915
						1915					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Russell's Antinomy
Let  be the set of all sets which are not members of themselves. Then
 be the set of all sets which are not members of themselves. Then  is neither a member of itself nor not a member of itself. Symbolically, let
 is neither a member of itself nor not a member of itself. Symbolically, let ![R=<span style=]() {x:x not in x}" src="https://mathworld.wolfram.com/images/equations/RussellsAntinomy/Inline3.svg" style="height:22px; width:110px" />. Then
{x:x not in x}" src="https://mathworld.wolfram.com/images/equations/RussellsAntinomy/Inline3.svg" style="height:22px; width:110px" />. Then  iff
 iff  .
.
Bertrand Russell discovered this paradox and sent it in a letter to G. Frege just as Frege was completing Grundlagen der Arithmetik. This invalidated much of the rigor of the work, and Frege was forced to add a note at the end stating, "A scientist can hardly meet with anything more undesirable than to have the foundation give way just as the work is finished. I was put in this position by a letter from Mr. Bertrand Russell when the work was nearly through the press."
REFERENCES
Courant, R. and Robbins, H. "The Paradoxes of the Infinite." §2.4.5 in What Is Mathematics?: An Elementary Approach to Ideas and Methods, 2nd ed. Oxford, England: Oxford University Press, p. 78, 1996.
Curry, H. B. Foundations of Mathematical Logic, 2nd rev. ed. New York: Dover, p. 4, 1977.
Erickson, G. W. and Fossa, J. A. Dictionary of Paradox. Lanham, MD: University Press of America, pp. 175-177, 1998.
Frege, G. Foundations of Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number, 2nd rev. ed. Evanston, IL: Northwestern University Press, 1980.
Hoffman, P. The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. New York: Hyperion, p. 116, 1998.
Hofstadter, D. R. Gödel, Escher, Bach: An Eternal Golden Braid. New York: Vintage Books, pp. 20-21, 1989.
Mirimanoff, D. "Les antinomies de Russell et de Burali-Forti et le problème fondamental de la théorie des ensembles." Enseign. math. 19, 37-52, 1917.
Whitehead, A. N. and Russell, B. Principia Mathematica. New York: Cambridge University Press, pp. 79 and 101, 1927.
				
				
					
					 الاكثر قراءة في  المنطق
					 الاكثر قراءة في  المنطق					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة