 
					
					
						Richardson,s Theorem					
				 
				
					
						 المؤلف:  
						Caviness, B. F
						 المؤلف:  
						Caviness, B. F					
					
						 المصدر:  
						"On Canonical Forms and Simplification." J. Assoc. Comp. Mach. 17
						 المصدر:  
						"On Canonical Forms and Simplification." J. Assoc. Comp. Mach. 17					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 20-1-2022
						20-1-2022
					
					
						 2479
						2479					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Richardson's Theorem
Let  be the class of expressions generated by
 be the class of expressions generated by
1. The rational numbers and the two real numbers  and
 and  ,
,
2. The variable  ,
,
3. The operations of addition, multiplication, and composition, and
4. The sine, exponential, and absolute value functions.
Then if  , the predicate "
, the predicate " " is recursively undecidable.
" is recursively undecidable.
REFERENCES
Caviness, B. F. "On Canonical Forms and Simplification." J. Assoc. Comp. Mach. 17, 385-396, 1970.
Davenport, J. H. J. Symb. Comput. 34, 259, 2002.
Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A K Peters, 1996. 
http://www.cis.upenn.edu/~wilf/AeqB.html.Richardson, D. "Some Unsolvable Problems Involving Elementary Functions of a Real Variable." J. Symbolic Logic 33, 514-520, 1968.Richardson, D. J. Symb. Comput. 24, 627, 1997.
Richardson, D. In Computability and Complexity in Analysis (Ed. J. Blanck, V. Brattka, and P. Hertling). Berlin: Springer-Verlag, 2000.
Trott, M. The Mathematica GuideBook for Symbolics. New York: Springer-Verlag, 2005. http://www.mathematicaguidebooks.org/.
				
				
					
					 الاكثر قراءة في  المنطق
					 الاكثر قراءة في  المنطق					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة