 
					
					
						Variety					
				 
				
					
						 المؤلف:  
						Burris, S. and Sankappanavar, H. P.
						 المؤلف:  
						Burris, S. and Sankappanavar, H. P.					
					
						 المصدر:  
						A Course in Universal Algebra. New York: Springer-Verlag, 1981.
						 المصدر:  
						A Course in Universal Algebra. New York: Springer-Verlag, 1981.					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 10-2-2022
						10-2-2022
					
					
						 870
						870					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Variety
A variety is a class of algebras that is closed under homomorphisms, subalgebras, and direct products. Examples include the variety of groups, the variety of rings, the variety of lattices. The class of fields (viewed as a subclass of the class of rings) is not a variety, because it is not closed under direct products.
Some important varieties, such as the variety of distributive lattices, are locally finite, meaning that their finitely generated algebras are finite. Others, such as the variety of all lattices, are not locally finite. In strong varieties, direct sums of locally finite algebras are locally finite.
Note that this type of variety arises in universal algebra and really has nothing to do with algebraic varieties, toric varieties, etc.
REFERENCES
Burris, S. and Sankappanavar, H. P. A Course in Universal Algebra. New York: Springer-Verlag, 1981.
 http://www.thoralf.uwaterloo.ca/htdocs/ualg.html.Cohn, P. M. Universal Algebra. New York: Harper and Row, 1965.
Grätzer, G. Universal Algebra, 2nd ed. New York: Springer-Verlag, 1979.
Insall, M. "Nonstandard Methods and Finiteness Conditions in Algebra." Zeitschrifte für Math. Logik und Grundlagen d. Math. 37, 525-532, 1991.
				
				
					
					 الاكثر قراءة في  المنطق
					 الاكثر قراءة في  المنطق					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة