 
					
					
						Reduction System					
				 
				
					
						 المؤلف:  
						Baader, F. and Nipkow, T.
						 المؤلف:  
						Baader, F. and Nipkow, T.					
					
						 المصدر:  
						Term Rewriting and All That. Cambridge, England: Cambridge University Press, 1999.
						 المصدر:  
						Term Rewriting and All That. Cambridge, England: Cambridge University Press, 1999.					
					
						 الجزء والصفحة:  
						...
						 الجزء والصفحة:  
						...					
					
					
						 8-2-2022
						8-2-2022
					
					
						 1023
						1023					
				 
				
				
				
				
				
				
				
				
				
			 
			
			
				
				Reduction System
A system in which words (expressions) of a formal language can be transformed according to a finite set of rewrite rules is called a reduction system. While reduction systems are also known as string rewriting systems or term rewriting systems, the term "reduction system" is more general.
Lambda calculus is an example of a reduction system with lambda conversion rules constituting its rewrite rules.
If none of the rewrite rules of a reduction system apply to expression  , then
, then  is said to be in normal form for a reduction system.
 is said to be in normal form for a reduction system.
A pair of expressions  is called joinable if both
 is called joinable if both  and
 and  can be reduced to the same expression in zero or more reduction steps (i.e., applications of rewrite rules).
 can be reduced to the same expression in zero or more reduction steps (i.e., applications of rewrite rules).
If  is reduced to
 is reduced to  in one step, this is indicated
 in one step, this is indicated  . If
. If  is reduced to
 is reduced to  in zero or more steps, this is indicated
 in zero or more steps, this is indicated  . The notation
. The notation  is used if there is a sequence
 is used if there is a sequence ![<span style=]() {a_0,...,a_n}" src="https://mathworld.wolfram.com/images/equations/ReductionSystem/Inline13.svg" style="height:24px; width:88px" /> such that
{a_0,...,a_n}" src="https://mathworld.wolfram.com/images/equations/ReductionSystem/Inline13.svg" style="height:24px; width:88px" /> such that  ,
,  , and for every pair
, and for every pair  , either
, either  or
 or  .multinomial coefficient calculator
.multinomial coefficient calculator
REFERENCES
Baader, F. and Nipkow, T. Term Rewriting and All That. Cambridge, England: Cambridge University Press, 1999.
				
				
					
					 الاكثر قراءة في  المنطق
					 الاكثر قراءة في  المنطق					
					
				 
				
				
					
					 اخر الاخبار
						اخر الاخبار
					
					
						
							  اخبار العتبة العباسية المقدسة