1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : الرياضيات المتقطعة : المنطق :

Gödel,s First Incompleteness Theorem

المؤلف:  Barrow, J. D

المصدر:  Pi in the Sky: Counting, Thinking, and Being. Oxford, England: Clarendon Press

الجزء والصفحة:  ...

17-1-2022

1413

Gödel's First Incompleteness Theorem

Gödel's first incompleteness theorem states that all consistent axiomatic formulations of number theory which include Peano arithmetic include undecidable propositions (Hofstadter 1989). This answers in the negative Hilbert's problem asking whether mathematics is "complete" (in the sense that every statement in the language of number theory can be either proved or disproved).

The inclusion of Peano arithmetic is needed, since for example Presburger arithmetic is a consistent axiomatic formulation of number theory, but it is decidable.

However, Gödel's first incompleteness theorem also holds for Robinson arithmetic (though Robinson's result came much later and was proved by Robinson).

Gerhard Gentzen showed that the consistency and completeness of arithmetic can be proved if transfinite induction is used. However, this approach does not allow proof of the consistency of all mathematics.


REFERENCES

Barrow, J. D. Pi in the Sky: Counting, Thinking, and Being. Oxford, England: Clarendon Press, p. 121, 1993.

Erickson, G. W. and Fossa, J. A. Dictionary of Paradox. Lanham, MD: University Press of America, pp. 74-75, 1998.

Franzén, T. "Gödel on the Net." http://www.sm.luth.se/~torkel/eget/godel.html.Gödel, K. "Über Formal Unentscheidbare Sätze der Principia Mathematica und Verwandter Systeme, I." Monatshefte für Math. u. Physik 38, 173-198, 1931.

Gödel, K. On Formally Undecidable Propositions of Principia Mathematica and Related Systems. New York: Dover, 1992.Hofstadter, D. R. Gödel, Escher, Bach: An Eternal Golden Braid. New York: Vintage Books, p. 17, 1989.

Kolata, G. "Does Gödel's Theorem Matter to Mathematics?" Science 218, 779-780, 1982.

Rucker, R. Infinity and the Mind: The Science and Philosophy of the Infinite. Princeton, NJ: Princeton University Press, 1995.

Smullyan, R. M. Gödel's Incompleteness Theorems. New York: Oxford University Press, 1992.

Whitehead, A. N. and Russell, B. Principia Mathematica. New York: Cambridge University Press, 1927.

Wolfram, S. A New Kind of Science. Champaign, IL: Wolfram Media, pp. 782, 2002.

EN

تصفح الموقع بالشكل العمودي