1

المرجع الالكتروني للمعلوماتية

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي

الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية

الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق

الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات

الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل

المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات

التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات

علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان

الرياضيات : التفاضل و التكامل :

Prime Zeta Function

المؤلف:  Cohen, H.

المصدر:  Advanced Topics in Computational Number Theory. New York: Springer-Verlag, 2000.

الجزء والصفحة:  ...

12-9-2019

1985

Prime Zeta Function

PrimeZeta

The prime zeta function

 P(s)=sum_(p)1/(p^s),

(1)

where the sum is taken over primes is a generalization of the Riemann zeta function

 zeta(s)=sum_(k=1)^infty1/(k^s),

(2)

where the sum is over all positive integers. In other words, the prime zeta function P(s) is the Dirichlet generating function of the characteristic function of the primes p_nP(s) is illustrated above on positive the real axis, where the imaginary part is indicated in yellow and the real part in red. (The sign difference in the imaginary part compared to the plot appearing in Fröberg is presumably a result of the use of a different convention for ln(-1).)

Various terms and notations are used for this function. The term "prime zeta function" and notation P(s) were used by Fröberg (1968), whereas Cohen (2000) uses the notation S_s.

The series converges absolutely for sigma>1, where s=sigma+it, can be analytically continued to the strip 0<sigma<=1 (Fröberg 1968), but not beyond the line sigma=0 (Landau and Walfisz 1920, Fröberg 1968) due to the clustering of singular points along the imaginary axis arising from the nontrivial zeros of the Riemann zeta function on the critical line t=1/2.

As illustrated in the left figure above (where the real part is indicated in red and the imaginary part in yellow), the function has singular points along the real axis for s=1/k where k runs through all positive integers without a square factor. For s close to 1, P(s) has the expansion

 P(1+epsilon)=-lnepsilon+C+O(epsilon),

(3)

where epsilon>0 and

C = sum_(n=2)^(infty)(mu(n))/nlnzeta(n)

(4)

= -0.315718452...

(5)

(OEIS A143524), where mu(k) is the Möbius function and zeta(n) is the Riemann zeta function (Fröberg 1968).

PrimeZetaFunctionIm

The prime zeta function is plotted above for R[s]=1/2 and R[s]=1 (Fröberg 1968).

PrimeZetaReImPrimeZetaContours

The prime zeta function is illustrated above in the complex plane.

The prime zeta function can be expressed in terms of the Riemann zeta function by

ln[zeta(s)] = -sum_(p>=2)ln(1-p^(-s))

(6)

= sum_(p>=2)sum_(k=1)^(infty)(p^(-ks))/k

(7)

= sum_(k=1)^(infty)1/ksum_(p>=2)p^(-ks)

(8)

= sum_(k=1)^(infty)(P(ks))/k.

(9)

Inverting then gives

 P(s)=sum_(k=1)^infty(mu(k))/kln[zeta(ks)]

(10)

(Glaisher 1891, Fröberg 1968, Cohen 2000).

The prime zeta function is implemented in the Wolfram Language as PrimeZetaP[s].

The Dirichlet generating function of the composite numbers c_n is given by

sum_(n=1)^(infty)1/(c_n^s) = 1/(4^s)+1/(6^s)+1/(8^s)+1/(9^s)+...

(11)

= zeta(s)-1-P(s).

(12)

P(1), The analog of the harmonic series, diverges, but convergence of the series for n>1 is quadratic. However, dropping the initial term from the sum for P(1) (and adding the Euler-Mascheroni constant gamma to the result) gives simply the Mertens constant

B_1 = gamma+sum_(m=2)^(infty)(mu(m))/mln[zeta(m)]

(13)

= 0.2614972128...

(14)

(OEIS A077761).

Artin's constant C_(Artin) is connected with P(n) by

 lnC_(Artin)=-sum_(n=2)^infty((L_n-1)P(n))/n,

(15)

where L_n is a Lucas number (Ribenboim 1998, Gourdon and Sebah).

The values of P(n) for the first few integers n starting with two are given in the following table. Merrifield (1881) computed P(n) for n up to 35 to 15 digits, and Liénard (1948) computed P(n) up to n=167 to 50 digits (Ribenboim 1996). Gourdon and Sebah give values to 60 digits for 2<=n<=8.

n OEIS P(n)
2 A085548 0.452247
3 A085541 0.174763
4 A085964 0.0769931
5 A085965 0.035755
6 A085966 0.0170701
7 A085967 0.00828383
8 A085968 0.00406141
9 A085969 0.00200447
10   0.000993604

PrimeZetaRoots

According to Fröberg (1968), very little is known about the roots P(s). The plots above show the positions of zeros (left figure) and contours of zero real (red) and imaginary (blue) parts in a portion of the complex plane, with roots indicated as black dots (right figure).


REFERENCES:

Cohen, H. "High Precision Computation of Hardy-Littlewood Constants." Preprint. http://www.math.u-bordeaux.fr/~cohen/hardylw.dvi.

Cohen, H. Advanced Topics in Computational Number Theory. New York: Springer-Verlag, 2000.

Dahlquist, G. "On the Analytic Continuation of Eulerian Products." Arkiv för Math. 1, 533-554, 1951.

Davis, H. T. Tables of the Higher Mathematical Functions, Vol. 2. Bloomington, IN: Principia Press, p. 249, 1933.

Fröberg, C.-E. "On the Prime Zeta Function." BIT 8, 187-202, 1968.

Glaisher, J. W. L. "On the Sums of Inverse Powers of the Prime Numbers." Quart. J. Math. 25, 347-362, 1891.

Gourdon, X. and Sebah, P. "Some Constants from Number Theory." http://numbers.computation.free.fr/Constants/Miscellaneous/constantsNumTheory.html.

Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Oxford University Press, pp. 355-356, 1979.

Haselgrove, C. B. and Miller, J. C. P. "Tables of the Riemann Zeta Function." Royal Society Mathematical Tables, Vol. 6. Cambridge, England: Cambridge University Press, p. 58, 1960.

Landau, E. and Walfisz, A. "Über die Nichfortsetzbarkeit einiger durch Dirichletsche Reihen definierter Funktionen." Rend. Circ. Math. Palermo 44, 82-86, 1920.

Liénard, R. Tables fondamentales à 50 décimales des sommes S_nu_nSigma_n. Paris: Centre de Docum. Univ., 1948.

Merrifield, C. W. "The Sums of the Series of Reciprocals of the Prime Numbers and of Their Powers." Proc. Roy. Soc. London 33, 4-10, 1881.

Muñoz García, E. and Pérez Marco, R. "The Product Over All Primes is 4pi^2." Preprint IHES/M/03/34. May 2003. http://inc.web.ihes.fr/prepub/PREPRINTS/M03/Resu/resu-M03-34.html.

Muñoz García, E. and Pérez Marco, R. "The Product Over All Primes is 4pi^2." Commun. Math. Phys. 277, 69-81, 2008.

Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, 1996.

Sloane, N. J. A. Sequences A077761, A085541, A085548, A085964, A085965, A085966, A085967, A085968, A085969, and A143524 in "The On-Line Encyclopedia of Integer Sequences."

EN

تصفح الموقع بالشكل العمودي