

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Lambert W-Function
المؤلف:
Banwell, T. C. and Jayakumar, A.
المصدر:
"Exact Analytical Solution for Current Flow Through Diode with Series Resistance." Electronics Lett. 36
الجزء والصفحة:
...
21-7-2019
3718
Lambert W-Function

The Lambert
-function, also called the omega function, is the inverse function of
![]() |
(1) |
The plot above shows the function along the real axis. The principal value of the Lambert
-function is implemented in the Wolfram Language as ProductLog[z]. Different branches of the function are available in the Wolfram Language as ProductLog[k, z], where
is any integer and
corresponds to the principal value. Although undocumented, LambertW[k, z] autoevaluates to ProductLog[k, z] in the Wolfram Language.
Lambert (1758) considered the solution to
![]() |
(2) |
now known as Lambert's transcendental equation. Euler heard about Lambert's paper in 1764 when Lambert moved from Zurich to Berlin. After some private disputes about the priorities of some related series expansions in 1770/1771, Euler (1783) wrote a paper about Lambert's transcendental equation in which he introduced a special case which reduces to
, which is nearly the definition of
, although Euler proposed defining a function more like
. Euler considered series solutions in this paper and, in the first paragraph, explicitly quotes Lambert as the one who first considered this equation.
Eisenstein (1844) considered the series of the infinite power tower
![]() |
(3) |
which can be expressed in closed form as
![]() |
(4) |
Pólya and Szegö (1925) were the first to use the symbol
for the Lambert function.
Banwell and Jayakumar (2000) showed that a
-function describes the relation between voltage, current, and resistance in a diode, and Packel and Yuen (2004) applied the
-function to a ballistic projectile in the presence of air resistance. Other applications have been discovered in statistical mechanics, quantum chemistry, combinatorics, enzyme kinetics, the physiology of vision, the engineering of thin films, hydrology, and the analysis of algorithms (Hayes 2005).
![]() |
The Lambert
-function is illustrated above in the complex plane.

The real (left) and imaginary (right) parts of the analytic continuation of
over the complex plane are illustrated above (M. Trott, pers. comm.).
is real for
. It has the special values
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
![]() |
![]() |
![]() |
(8) |
(OEIS A030178) is called the omega constant and can be considered a sort of "golden ratio" of exponentials since
![]() |
(9) |
giving
![]() |
(10) |
The Lambert
-function obeys the identity
![]() |
(11) |
(pers. comm. from R. Corless to O. Marichev, Sep. 29, 2015).
![]() |
The function
has a very complicated structure in the complex plane, but is simply equal to 1 for
and a slightly extended region above and below the real axis.
The Lambert
-function has the series expansion
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
The Lagrange inversion theorem gives the equivalent series expansion
![]() |
(14) |
where
is a factorial. However, this series oscillates between ever larger positive and negative values for real
, and so cannot be used for practical numerical computation.
An asymptotic formula which yields reasonably accurate results for
is
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
where
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
(Corless et al. 1996), correcting a typographical error in de Bruijn (1981). Another expansion due to Gosper (pers. comm., July 22, 1996) is the double series
|
(19) |
where
is a nonnegative Stirling number of the first kind and
is a first approximation which can be used to select between branches. The Lambert
-function is two-valued for
. For
, the function is denoted
or simply
, and this is called the principal branch. For
, the function is denoted
. The derivative of
is
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
for
. For the principal branch when
,
![]() |
(22) |
The
th derivatives of the Lambert
-function are given by
![]() |
(23) |
where
is the number triangle
![]() |
(24) |
(OEIS A042977). This has exponential generating function
![]() |
![]() |
![]() |
(25) |
![]() |
![]() |
![]() |
(26) |
REFERENCES:
Banwell, T. C. and Jayakumar, A. "Exact Analytical Solution for Current Flow Through Diode with Series Resistance." Electronics Lett. 36, 291-292, 2000.
Barry, D. J., Culligen-Hensley, P. J.; and Barry, S. J. "Real Values of the
Function." ACM Trans. Math. Software 21, 161-171, 1995.
Borwein, J. M. and Corless, R. M. "Emerging Tools for Experimental Mathematics." Amer. Math. Monthly 106, 899-909, 1999.
Briggs, K. "
-ology, or, Some Exactly Solvable Growth Models." http://keithbriggs.info/W-ology.html.
Briggs, K. "Graph Theory and Lambert's
function." http://keithbriggs.info/graph_theory_and_W.html.
Corless, R. M. "Material on the Lambert
Function." (Ed. W. W. Küchlin). New York: ACM, pp. 197-204, 1997. http://www.apmaths.uwo.ca/~rcorless/frames/PAPERS/LambertW/.
Corless, R. M.; Gonnet, G. H.; Hare, D. E. G.; Jeffrey, D. J.; and Knuth, D. E. "On the Lambert
Function." Adv. Comput. Math. 5, 329-359, 1996.
Corless, R. M.; Gonnet, G. H.; Hare, D. E. G.; and Jeffrey, D. J. "Lambert's
Function in Maple." Maple Technical Newsletter 9, 12-22, Spring 1993.
Corless, R. M. and Jeffrey, D. J. "The Wright
Function." In Artificial Intelligence, Automated Reasoning, and Symbolic Computation (Ed. J. Calmet, B. Benhamou, O. Caprotti, L. Henocque and V. Sorge). Berlin: Springer-Verlag, pp. 76-89, 2002.
Corless, R. M.; Jeffrey, D. J.; and Knuth, D. E. "A Sequence of Series for the Lambert
Function." In Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, Maui, Hawaii. New York: ACM Press, pp. 197-204, 1997.
de Bruijn, N. G. Asymptotic Methods in Analysis. New York: Dover, pp. 27-28, 1981.
Eisenstein, G. "Entwicklung von
." J. reine angew. Math. 28, 49-52, 1844.
Euler, L. "De serie Lambertina Plurimisque eius insignibus proprietatibus." Acta Acad. Scient. Petropol. 2, 29-51, 1783. Reprinted in Euler, L. Opera Omnia, Series Prima, Vol. 6: Commentationes Algebraicae. Leipzig, Germany: Teubner, pp. 350-369, 1921.
Fritsch, F. N.; Shafer, R. E.; and Crowley, W. P. "Algorithm 443: Solution of the Transcendental Equation
." Comm. ACM 16, 123-124, 1973.
Gosper, R. W. Jr. "The Solutions of
and
." ACM SIGSAM Bull. 32, 8-10, 1998.
Gosper, R. W. "Re: 2nd Order Eulerians." math-fun@cs.arizona.edu posting, July 22, 1996.
Gray, J. J. and Tilling, L. "Johann Heinrich Lambert, Mathematician and Scientist 1728-1777." Historia Math. 5, 13-41, 1978.
Hayes, B. "Why
?" Amer. Sci. 93, 104-108, 2005.
Jeffrey, D. J.; Hare, D. E. G.; and Corless, R. M. "Unwinding the Branches of the Lambert
Function." Math. Scientist 21, 1-7, 1996.
Jeffrey, D. J.; Hare, D. E. G.; and Corless, R. M. "Exact Rational Solutions of a Transcendental Equation." C. R. Math. Acad. Sci. Canada 20, 71-76, 1998.
Jeffrey, D. J.; Corless, R. M.; Hare, D. E. G.; and Knuth, D. E. "Sur l'inversion de
au moyen des nombres de Stirling associes." Comptes Rendus Acad. Sci. Paris 320, 1449-1452, 1995.
Kalman, D. "A Generalized Logarithm for Exponential-Linear Equations." College Math. J. 32, 2-14, 2001.
Lambert, J. H. "Observations variae in Mathesin Puram." Acta Helvitica, physico-mathematico-anatomico-botanico-medica 3, 128-168, 1758.
ORCCA. "The Lambert W Function." http://www.orcca.on.ca/LambertW.
Packel, E. and Yuen, D. "Projectile Motion with Resistance and the Lambert
Function." College Math. J. 35, 337-350, 2004.
Pólya, G. and Szegö, G. Aufgaben und Lehrsätze der Analysis. Berlin, 1925. Reprinted as Problems and Theorems in Analysis I. Berlin: Springer-Verlag, 1998.
Sloane, N. J. A. Sequences A030178 and A042977 in "The On-Line Encyclopedia of Integer Sequences."
"Time for a New Elementary Function?" FOCUS: Newsletter Math. Assoc. Amer. 20, 2, Feb. 2000.
Valluri, S. R.; Jeffrey, D. J.; and Corless, R. M. "Some Applications of the Lambert
Function to Physics." Canad. J. Phys. 78, 823-831, 2000.
Wright, E. M. "Solution of the Equation
." Bull. Amer. Math. Soc. 65, 89-93, 1959.
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية


















![exp[-W(1)]=W(1),](http://mathworld.wolfram.com/images/equations/LambertW-Function/NumberedEquation5.gif)
![ln[1/(W(1))]=W(1).](http://mathworld.wolfram.com/images/equations/LambertW-Function/NumberedEquation6.gif)














![L_1-L_2+(L_2)/(L_1)+(L_2(-2+L_2))/(2L_1^2)+(L_2(6-9L_2+2L_2^2))/(6L_1^3)+(L_2(-12+36L_2-22L_2^2+3L_2^3))/(12L_1^4)+(L_2(60-300L_2+350L_2^2-125L_2^3+12L_2^4))/(60L_1^5)+O[((L_2)/(L_1))^6],](http://mathworld.wolfram.com/images/equations/LambertW-Function/Inline46.gif)








![1/([1+W(x)]exp[W(x)])](http://mathworld.wolfram.com/images/equations/LambertW-Function/Inline65.gif)


![(W(x))/(x[1+W(x)])](http://mathworld.wolfram.com/images/equations/LambertW-Function/Inline68.gif)
![ln[W(z)]=lnz-W(z).](http://mathworld.wolfram.com/images/equations/LambertW-Function/NumberedEquation10.gif)
![W^((n))(z)=(W^(n-1)(z))/(z^n[1+W(z)]^(2n-1))sum_(k=1)^na_(kn)W^k(z),](http://mathworld.wolfram.com/images/equations/LambertW-Function/NumberedEquation11.gif)







قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)