تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Generalized Function
المؤلف:
Brychkov, Yu. A. and Prudnikov, A. P
المصدر:
Integral Transforms of Generalized Functions. New York: Gordon and Breach, 1989.
الجزء والصفحة:
...
25-5-2019
1660
Generalized Function
The class of all regular sequences of particularly well-behaved functions equivalent to a given regular sequence. A distribution is sometimes also called a "generalized function" or "ideal function." As its name implies, a generalized function is a generalization of the concept of a function. For example, in physics, a baseball being hit by a bat encounters a force from the bat, as a function of time. Since the transfer of momentum from the bat is modeled as taking place at an instant, the force is not actually a function. Instead, it is a multiple of the delta function. The set of distributions contains functions (locally integrable) and Radon measures. Note that the term "distribution" is closely related to statistical distributions.
Generalized functions are defined as continuous linear functionals over a space of infinitely differentiable functions such that all continuous functions have derivatives which are themselves generalized functions. The most commonly encountered generalized function is the delta function. Vladimirov (1971) contains a nice treatment of distributions from a physicist's point of view, while the multivolume work by Gel'fand and Shilov (1964abcde) is a classic and rigorous treatment of the field. A result of Schwarz shows that distributions can't be consistently defined over the complex numbers .
While it is possible to add distributions, it is not possible to multiply distributions when they have coinciding singular support. Despite this, it is possible to take the derivative of a distribution, to get another distribution. Consequently, they may satisfy a linear partial differential equation, in which case the distribution is called a weak solution. For example, given any locally integrable function it makes sense to ask for solutions
of Poisson's equation
![]() |
(1) |
by only requiring the equation to hold in the sense of distributions, that is, both sides are the same distribution. The definitions of the derivatives of a distribution are given by
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
Distributions also differ from functions because they are covariant, that is, they push forward. Given a smooth function , a distribution
on
pushes forward to a distribution on
. In contrast, a real function
on
pulls back to a function on
, namely
.
Distributions are, by definition, the dual to the smooth functions of compact support, with a particular topology. For example, the delta function is the linear functional
. The distribution corresponding to a function
is
![]() |
(4) |
and the distribution corresponding to a measure is
![]() |
(5) |
The pushforward map of a distribution along
is defined by
![]() |
(6) |
and the derivative of is defined by
where
is the formal adjoint of
. For example, the first derivative of the delta function is given by
![]() |
(7) |
As is the case for any function space, the topology determines which linear functionals are continuous, that is, are in the dual vector space. The topology is defined by the family of seminorms,
![]() |
(8) |
where sup denotes the supremum. It agrees with the C-infty topology on compact subsets. In this topology, a sequence converges, , iff there is a compact set
such that all
are supported in
and every derivative
converges uniformly to
in
. Therefore, the constant function 1 is a distribution, because if
then
![]() |
(9) |
REFERENCES:
Brychkov, Yu. A. and Prudnikov, A. P. Integral Transforms of Generalized Functions. New York: Gordon and Breach, 1989.
Gel'fand, I. M. and Shilov, G. E. Generalized Functions, Vol. 1: Properties and Operations. New York: Academic Press, 1964a.
Gel'fand, I. M. and Shilov, G. E. Generalized Functions, Vol. 2: Spaces of Fundamental and Generalized Functions. New York: Academic Press, 1964b.
Gel'fand, I. M. and Shilov, G. E. Generalized Functions, Vol. 3: Theory of Differential Equations. New York: Academic Press, 1964c.
Gel'fand, I. M. and Shilov, G. E. Generalized Functions, Vol. 4: Applications of Harmonic Analysis. New York: Academic Press, 1964d.
Gel'fand, I. M. and Shilov, G. E. Generalized Functions, Vol. 5: Integral Geometry and Representation Theory. New York: Academic Press, 1964e.
Kanwal, R. P. Generalized Functions: Theory and Technique, 2nd ed. Boston, MA: Birkhäuser, 1998.
Vladimirov, V. S. Equations of Mathematical Physics. New York: Dekker, 1971.
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
