Gauss,s Hypergeometric Theorem
المؤلف:
Hardy, G. H
المصدر:
Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea
الجزء والصفحة:
...
22-5-2019
1672
Gauss's Hypergeometric Theorem
for
, where
is a (Gauss) hypergeometric function. If
is a negative integer
, this becomes
which is known as the Chu-Vandermonde identity.
REFERENCES:
Bailey, W. N. "Gauss's Theorem." §1.3 in Generalised Hypergeometric Series. Cambridge, England: Cambridge University Press, pp. 2-3, 1935.
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, p. 104, 1999.
Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, p. 31, 1998.
Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A K Peters, pp. 42 and 126, 1996. http://www.cis.upenn.edu/~wilf/AeqB.html.
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة