تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Factorial Sums
المؤلف:
Guy, R. K.
المصدر:
Equal Products of Factorials," "Alternating Sums of Factorials," and "Equations Involving Factorial n." §B23, B43, and D25 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag
الجزء والصفحة:
...
19-5-2019
2236
![]() |
(1) |
For ,
![]() |
![]() |
![]() |
(2) |
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
where is the exponential integral,
(OEIS A091725),
is the En-function,
is the real partof
, and i is the imaginary number. The first few values are 1, 3, 9, 33, 153, 873, 5913, 46233, 409113, ... (OEIS A007489).
cannot be written as a hypergeometric term plus a constant (Petkovšek et al. 1996). The only prime of this form is
, since
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
![]() |
![]() |
![]() |
(7) |
is always a multiple of 3 for .
In fact, is divisible by 3 for
and
, 5, 7, ... (since the Cunningham number given by the sum of the first two terms
is always divisible by 3--as are all factorial powers in subsequent terms
) and so contains no primes, meaning sequences with even
are the only prime contenders.
The sum
![]() |
(8) |
does not appear to have a simple closed form, but its values for , 2, ... are 1, 5, 41, 617, 15017, 533417, 25935017, ... (OEIS A104344). It is prime for indices 2, 3, 4, 5, 7, 8, 10, 18, 21, 42, 51, 91, 133, 177, 182, 310, 3175, 9566, 32841, ... (OEIS A100289). Since
is divisible by 1248829 for
, there can be only a finite number of such primes. (However, the largest such prime is not known, which is not surprising given that
has more than 14 million decimal digits.)
is divisible by 13 for
and the only prime with
is
.
The case of is slightly more interesting, but
is divisible by 1091 for
and checking the terms below that gives the only prime terms as
, 34, and 102 (OEIS A289947).
The only prime in is for
since
is divisible by 13 for
.
Similarly, the only primes in are for
, 4, 5, 16, and 25 (OEIS A290014). since
is divisible by 41 for
.
The sequence of smallest (prime) numbers such that
is divisible by
for
is given for
, 2, ... by 1248829, 13, 1091, 13, 41, 37, 463, 13, 23, 13, 1667, 37, 23, 13, 41, 13, 139, ... (OEIS A290250).
The related sum with index running from 0 instead of 1 is sometimes denoted (not to be confused with the subfactorial) and known as the left factorial,
![]() |
(9) |
The related sum with alternating terms is known as the alternating factorial,
![]() |
(10) |
The sum
![]() |
(11) |
has a simple form, with the first few values being 1, 5, 23, 119, 719, 5039, ... (OEIS A033312).
Identities satisfied by sums of factorials include
![]() |
![]() |
![]() |
(12) |
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
![]() |
![]() |
![]() |
(19) |
(OEIS A001113, A068985, A070910, A091681, A073743, A049470, A073742, and A049469; Spanier and Oldham 1987), where is a modified Bessel function of the first kind,
is a Bessel function of the first kind,
is the hyperbolic cosine,
is the cosine,
is the hyperbolic sine, and
is the sine.
Sums of factorial powers include
![]() |
![]() |
![]() |
(20) |
![]() |
![]() |
![]() |
(21) |
![]() |
![]() |
![]() |
(22) |
![]() |
![]() |
![]() |
(23) |
(OEIS A091682 and A091683) and, in general,
![]() |
(24) |
Schroeppel and Gosper (1972) give the integral representation
![]() |
(25) |
where
![]() |
![]() |
![]() |
(26) |
![]() |
![]() |
![]() |
(27) |
![]() |
![]() |
![]() |
(28) |
There are only four integers equal to the sum of the factorials of their digits. Such numbers are called factorions.
While no factorial greater than 1! is a square number, D. Hoey listed sums of distinct factorials which give square numbers, and J. McCranie gave the one additional sum less than
:
![]() |
![]() |
![]() |
(29) |
![]() |
![]() |
![]() |
(30) |
![]() |
![]() |
![]() |
(31) |
![]() |
![]() |
![]() |
(32) |
![]() |
![]() |
![]() |
(33) |
![]() |
![]() |
![]() |
(34) |
![]() |
![]() |
![]() |
(35) |
![]() |
![]() |
![]() |
(36) |
![]() |
![]() |
![]() |
(37) |
![]() |
![]() |
![]() |
(38) |
![]() |
![]() |
![]() |
(39) |
![]() |
![]() |
![]() |
(40) |
![]() |
![]() |
![]() |
(41) |
![]() |
![]() |
![]() |
(42) |
and
![]() |
(43) |
(OEIS A014597).
Sums with powers of an index in the numerator and products of factorials in the denominator can often be done analytically in terms of regularized hypergeometric functions , for example
![]() |
(44) |
REFERENCES:
Guy, R. K. "Equal Products of Factorials," "Alternating Sums of Factorials," and "Equations Involving Factorial ." §B23, B43, and D25 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 80, 100, and 193-194, 1994.
Petkovšek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A K Peters, 1996. http://www.cis.upenn.edu/~wilf/AeqB.html.
Schroeppel, R. and Gosper, R. W. Item 116 in Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, p. 54, Feb. 1972. http://www.inwap.com/pdp10/hbaker/hakmem/series.html#item116.
Sloane, N. J. A. Sequences A001113/M1727, A007489/M2818, A014597, A033312, A049469, A049470, A068985, A070910, A073742, A073743, A091681, A091682, A091683, A091725, A100289, A104344, and A290250 in "The On-Line Encyclopedia of Integer Sequences."
Spanier, J. and Oldham, K. B. "The Factorial Function and Its Reciprocal." Ch. 2 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 19-33, 1987.