

تاريخ الرياضيات

الاعداد و نظريتها

تاريخ التحليل

تار يخ الجبر

الهندسة و التبلوجي


الرياضيات في الحضارات المختلفة

العربية

اليونانية

البابلية

الصينية

المايا

المصرية

الهندية


الرياضيات المتقطعة

المنطق

اسس الرياضيات

فلسفة الرياضيات

مواضيع عامة في المنطق


الجبر

الجبر الخطي

الجبر المجرد

الجبر البولياني

مواضيع عامة في الجبر

الضبابية

نظرية المجموعات

نظرية الزمر

نظرية الحلقات والحقول

نظرية الاعداد

نظرية الفئات

حساب المتجهات

المتتاليات-المتسلسلات

المصفوفات و نظريتها

المثلثات


الهندسة

الهندسة المستوية

الهندسة غير المستوية

مواضيع عامة في الهندسة

التفاضل و التكامل


المعادلات التفاضلية و التكاملية

معادلات تفاضلية

معادلات تكاملية

مواضيع عامة في المعادلات


التحليل

التحليل العددي

التحليل العقدي

التحليل الدالي

مواضيع عامة في التحليل

التحليل الحقيقي

التبلوجيا

نظرية الالعاب

الاحتمالات و الاحصاء

نظرية التحكم

بحوث العمليات

نظرية الكم

الشفرات

الرياضيات التطبيقية

نظريات ومبرهنات


علماء الرياضيات

500AD

500-1499

1000to1499

1500to1599

1600to1649

1650to1699

1700to1749

1750to1779

1780to1799

1800to1819

1820to1829

1830to1839

1840to1849

1850to1859

1860to1864

1865to1869

1870to1874

1875to1879

1880to1884

1885to1889

1890to1894

1895to1899

1900to1904

1905to1909

1910to1914

1915to1919

1920to1924

1925to1929

1930to1939

1940to the present

علماء الرياضيات

الرياضيات في العلوم الاخرى

بحوث و اطاريح جامعية

هل تعلم

طرائق التدريس

الرياضيات العامة

نظرية البيان
Plateau,s Problem
المؤلف:
Cundy, H. and Rollett, A
المصدر:
Mathematical Models, 3rd ed. Stradbroke, England: Tarquin Pub
الجزء والصفحة:
...
12-10-2018
2987
Plateau's Problem
The problem in calculus of variations to find the minimal surface of a boundary with specified constraints (usually having no singularities on the surface). In general, there may be one, multiple, or no minimal surfaces spanning a given closed curve in space. The existence of a solution to the general case was independently proven by Douglas (1931) and Radó (1933), although their analysis could not exclude the possibility of singularities. Osserman (1970) and Gulliver (1973) showed that a minimizing solution cannot have singularities.

The problem is named for the Belgian physicist who solved some special cases experimentally using soap films and wire frames (Isenberg 1992, Wells 1991). The illustration above shows the 13-polygon surface obtained for a cubical wire frame.
REFERENCES:
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. Stradbroke, England: Tarquin Pub., pp. 48-49, 1989.
Douglas, J. "Solution of the Problem of Plateau." Trans. Amer. Math. Soc. 33, 263-321, 1931.
Gulliver, R. "Regularity of Minimizing Surfaces of Prescribed Mean Curvature." Ann. Math. 97, 275-305, 1973.
Isenberg, C. The Science of Soap Films and Soap Bubbles. New York: Dover, 1992.
Osserman, R. "A Proof of the Regularity Everywhere of the Classical Solution to Plateau's Problem." Ann. Math. 91, 550-569, 1970.
Osserman, R. "Plateau's Problem." §1, Appendix in A Survey of Minimal Surfaces. New York: Dover, pp. 143-145, 1986.
Radó, T. "On the Problem of Plateau." Ergeben. d. Math. u. ihrer Grenzgebiete. Berlin: Springer-Verlag, 1933.
Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 119-121, 1999.
Stuwe, M. Plateau's Problem and the Calculus of Variations. Princeton, NJ: Princeton University Press, 1989.
Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 185-187, 1991.
الاكثر قراءة في التفاضل و التكامل
اخر الاخبار
اخبار العتبة العباسية المقدسة
الآخبار الصحية

قسم الشؤون الفكرية يصدر كتاباً يوثق تاريخ السدانة في العتبة العباسية المقدسة
"المهمة".. إصدار قصصي يوثّق القصص الفائزة في مسابقة فتوى الدفاع المقدسة للقصة القصيرة
(نوافذ).. إصدار أدبي يوثق القصص الفائزة في مسابقة الإمام العسكري (عليه السلام)