المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24

المراد من الصلاة الوسطى
13-11-2014
علاج الوسواس
10-10-2016
اسم النبي(صلى الله عليه وآله) ومولده ونسبه
1-12-2016
الجذر
15-10-2015
غرق الدنيا أيام نوح
31-7-2016
وثِيمَة بن موسى بن الفرات
14-08-2015

Jakob Philipp Kulik  
  
146   02:35 مساءاً   date: 12-7-2016
Author : R C Archibald
Book or Source : A Volume of Tables by Kulik, Mathematical Tables and Other Aids to Computation 13
Page and Part : ...


Read More
Date: 21-7-2016 218
Date: 12-7-2016 147
Date: 19-7-2016 148

Born: 1 May 1793 in Lemberg, Austrian Empire (now Lviv, Ukraine)
Died: 28 February 1863 in Prague, Bohemia (now Czech Republic)

 

Jakob Kulik's first name is, in addition to the common form Jakob, sometimes written as Jacob or Yakov. When he was born in Lvov, the city was known as Lemberg and was part of the Austrian Empire. Today the usual spelling of the city is Lviv and it is in Ukraine. Although Lvov was in the Austrian Empire, the inhabitants were largely Polish speaking and, indeed, Kulik's family considered themselves Polish. He attended the Philosophy Faculty of Lvov University and, after graduating, began to study law at the university. However, he soon lost interest in law as he became more and more fascinated by mathematics. He never completed his law degree.

In 1814 a competition was announced for the position of professor of elementary mathematics at the Lyceum in Olomouc (the German name for the town is Olmütz). Kulik entered the competition and was judged the best applicant, worthy of a professorship. He accepted the position and, while teaching in Olomouc, he undertook research towards a doctorate. While still undertaking research for his doctorate, he moved from Olomouc to Graz in 1816 when he was appointed Professor of Physics and Applied Mathematics at the Lyceum there. In the following year of 1817 he took on additional duties, teaching astronomy at the Joanneum in Graz. He received his doctorate in 1822 for a thesis which studied the rainbow, then, from 1826, he was Professor of Higher Mathematics at the Charles University of Prague. In November 1848, the year of revolution when many students joined in an insurrection, the library of the University of Lvov was destroyed by fire. Kulik donated over 1000 books to help rebuild the collection at the University in the town of his birth where he had studied. He remained in Prague until his death in 1863. He was buried in the Vysehrad Cemetery in that city.

Kulik wrote textbooks on mathematics and mechanics, for example publishing Lehrbuch der höheren Analysis (1st edition 1831, 2nd edition 1844) and Anfangsgründe der höheren mechanik in 1846. He also published his thousand-year calendar Der tausendjährige Kalender in 1831 (with a 2nd edition 1834). The calendar claims to be:-

... a useful handbook for historians, archivists, judges, lawyers, country clergymen, and even for those who wish to determine chronological data occurring in old manuscripts, history books, and documents.

Kulik is best known, however, for producing numerous mathematical tables including an unpublished table of divisors of integers consisting of 4212 pages. His first publication of mathematical tables was Handbuch mathematischer (1824). The contents are described by Raymond Archibald [1]:-

In the 'Handbuch' are 30 tables including the following:

1-2: All factors of numbers up to 21500 and the smallest factors up to 67100.

3-4: Squares and cubes of numbers up to 1000 and higher powers of numbers up to 100.

  5: Square roots and cube roots of numbers up to 1000.

15, 19: Natural and logarithmic sin and tan.

16: Natural secants.

28: 11-place log of prime numbers up to 1811.

Clearly Kulik intended this as part of a larger work which was never completed [1]:-

In the "Vorerinnerung," dated November, 1823, Kulik states that his 'Tafeln' are an extract from a larger work, to be published in the year 1824, and entitled 'Collectio tabularum mathematico-physicarum locupletissima, vollständige Sammlung mathematisch-physicalischer Tafeln'. Among various volumes of tables which Kulik wrote I do not find that this one is ever mentioned, not even in the bibliography sent by Kulik to Poggendorff (1863) nearly 40 years later.

Perhaps some of the tables which Kulik intended for this larger publication were contained in his next volume which was published in 1825, namely Divisores numerorum decies centena millia non excedentium. Accedunt tabulae auxiliares ad calculandos numeri cujuscunque divisores destinatae. Tafeln der einfachen Faktoren aller Zahlen unter Einer Million nebst Hülfstafeln zur Bestimmung der Factoren jeder grösseren Zahl. Unlike the earlier work, the tables presented here are all related to primes and factors. He continued to work on producing various tables, some of which he did not publish until many years after he had begun the work. The next tables he published were: conversion tables Toasirtafeln, zur leichtern Berechnung des Längen- Flächenund Kubik-Inhaltes und der verschiedenen Münz- Mass- und Gewichts-Beträge (1833); a table of squares and cubes Tafeln der Quadrat- und Kubik-Zahlen aller natürlichen Zahlen bis hundert Tausend, nebst ihrer Anwendung auf die Zerlegung grosser Zahlen in ihre Faktoren (1848); multiplication tables Neue Multiplikationstafeln: ein unentbehrliches Hülfsmittel für Jedermann, um schnell, sicher und ohne Ermüdung zu rechnen (1851); and tables of hyperbolic sectors and elliptic arcs Tafeln der hyperbolischen Sektoren und der Längen elliptischer Bögen und Quadranten (1851).

Kulik's most impressive work, however, if one is just thinking about the sheer magnitude of the task, was his unpublished tables of factors. He did publish a description of the unpublished tables in 1860 and, in 1866, Józeph Petzval also described Kulik's tables. In [4] Howard Eves states that Kulik's greatest achievement was the construction of these factor tables:-

His as yet unpublished manuscript is the result of a twenty-year hobby, and covers all numbers up to 100,000,000.

Similar statements are made in many other books, see for example Leonard Dickson's comments in [3]. Kulik's manuscripts are kept in the archives of the Austrian Academy of Sciences (Kaiserliche Akademie der Wissenschaften in Wien) in Vienna, and Novy has studied them and has written [6] and [7] to correct false statements about them such as the one by Eves above. Novy gives the following summary of his article [6]:-

The manuscript tables of J P Kulik (1793-1863), kept in the Archives of the Austrian Academy of Sciences of Vienna, are commonly alleged to give the least divisors of all numbers up to 100 million. The incorrectness of this assertion is demonstrated by an analysis of the manuscript materials including the unknown auxiliary computations made by Kulik. In the paper it is shown that the computations are incomplete, and that the least divisors of only certain numbers are entered in the tables, starting at the 23rd million. In comparison with the preserved part of the tables (the tables from 13,000,000 to23,000,000 are lost), the auxiliary computations reaching in a complete succession up to 20 million may be of greater value, although diminishingly so going up to 80 million. A description of Kulik's methods of computation is also given, and documents are referred to which substantiate the hypothesis that Kulik was helped in his work by collaborators. Meanwhile, we also give the basic dates for the rest of the tables (especially of trigonometric functions) deposited in Kulik's Nachlass in Vienna.

Novy is even more direct in his criticisms of the unpublished tables in [7]:-

... the manuscript of Kulik's tables of divisors is essentially useless beginning with the third volume; the second volume, which has been lost, could perhaps tell us more about the real value of the manuscript.

Kulik's methods of calculating his tables and other manuscripts left by him are, however, very interesting and are discussed in [7]. Other work by Kulik which we have not mentioned above includes: Theorie und Tafeln der Kettenlinie (1832); Untersuchungen über die Kettenbrückenlinie (1838); and Über die Tafel primitiver Wurzeln (1853).

The Union of Czech Mathematicians and Physicists began its existence on 28 May 1862 when the Society for Open Lectures in Mathematics and Physics in Prague was founded. Initially it was a student Society for students at the Charles University of Prague, but university teachers quickly supported the Society. In particular Kulik gave strong support and in the year after the Society was founded he donated a large part of his extensive library of mathematics books to the Society. When he died the rest of his library was left to the Society.

Let us end this biography by quoting the mathematician Frantisek Josef Studnicka (1836-1903), a colleague of Kulik's at the Charles University of Prague, who wrote of Kulik's death (see [10]):-


 

Articles:

  1. R C Archibald, A Volume of Tables by Kulik, Mathematical Tables and Other Aids to Computation 13 (2) (1946), 59-60.
  2. I Ya Depman, The notable Slavic computors, G Vega and Ya F Kulik (Russian), Istor.-Mat. Issled. 6 (1953), 573-608.
  3. L E Dickson, Jakob Kulik, in History of the theory of numbers I (Washington, D.C., 1919), 351-352.
  4. H Eves, Jakob Kulik, in An introduction to the history of mathematics (5th ed.) (Saunders College, Philadelphia, 1983), 436.
  5. Kulik, Jacob Philipp, in Constant von Wurzbach (ed.), Biographisches Lexikon des Kaiserthums Oesterreich 13 (k k Hof- und Staatsdruckerei, Wien, 1865), 356-359.
  6. L Novy, Kulik's divisor tables (Czech), Acta Hist. Rerum Natur. Nec Non Tech. 8 (1963), 43-52.
  7. L Novy, On Kulik's tables of divisors, Acta Hist. Rerum Nat. necnon Tech. Special Issue 16, Studies of Czechoslovak Historians for the 16th International Congress of the History of Science (Prague, 1981), 327-343.
  8. G Palamà, Una grande impresa: continuazione della tavola dei numeri primi di Lehmer a mezzo delle tavole del Kulik, del Poletti e del Porter, Boll. Un. Mat. Ital. (3) 5 (1950), 343-360.
  9. L Poletti, Il contributo italiano alla tavola dei numeri primi. Tavola dell'undicesimo milione, Rivista Mat. Univ. Parma 2 (1951), 417-434.
  10. S Porubsky, Jakob Philipp Kulik - ein vergessener Rechenkünstler, in Paths to Adam Ries. Meeting on the history of mathematics, Erfurt, Germany (2004), 307-328.
  11. S Porubsky, J Jakob Philipp Kulik - eine Mathematikerlaufbahn durch die Kronländer, in Magdalena Hyksová and Ulrich Reich (eds.), Eintauchen in die mathematische Vergangenheit. Tagung zur Geschichte der Mathematik in Pfalzgrafenweiler im Schwarzwald (20.5. bis 24.5.2009), Algorismus 76 (Erwin Rauner Verlag, Augsburg, 2011), 154-167.
  12. S Porubsky and B P Besser, Jakob Philipp Kuliks Wirken in Graz, in Christa Binder and Detlef Gronau (eds.), Beiträge zur Geschichte der Mathematik 355 (Graz, 2010), 1-30.
  13. D Roegel, A reconstruction of Kulik's table of factors (1825), LOCOMAT, The Loria Collection of Mathematical Tables. http://locomat.loria.fr/kulik1825/kulik1825doc.pdf

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.