المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الكيمياء
عدد المواضيع في هذا القسم 11123 موضوعاً
علم الكيمياء
الكيمياء التحليلية
الكيمياء الحياتية
الكيمياء العضوية
الكيمياء الفيزيائية
الكيمياء اللاعضوية
مواضيع اخرى في الكيمياء
الكيمياء الصناعية

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
أثر التأثير الاسترجاعي على المناخ The Effects of Feedback on Climate
2024-11-24
عمليات الخدمة اللازمة للجزر
2024-11-24
العوامل الجوية المناسبة لزراعة الجزر
2024-11-24
الجزر Carrot (من الزراعة الى الحصاد)
2024-11-24
المناخ في مناطق أخرى
2024-11-24
أثر التبدل المناخي على الزراعة Climatic Effects on Agriculture
2024-11-24

النباتات الصحراوية
2024-08-24
تصنيف البيانات- التصنيف الأبجدي
28-8-2022
الأصل في تناول الغذاء
17/12/2022
حشرة الذبابة البيضاء على الخيار
1-7-2022
Pisatin
21-8-2019
سطح المروحة من حيث نوع الارسابات وحجومها - الرواسب فوق أسطح رأس المروحة
27-8-2019


هل الذرة أصغر جزء مادي؟  
  
7553   02:04 صباحاً   التاريخ: 7-3-2016
المؤلف : ممدوح عبد الغفور حسن
الكتاب أو المصدر : عالم الذرة - هيئة المواد النووية
الجزء والصفحة : ..............
القسم : علم الكيمياء / الكيمياء الاشعاعية والنووية /

هل الذرة أصغر جزء مادي؟

      يقول لنا علم الكيمياء إن أية مادة فى الكون إما أن تكون عنصرا element أو تكون مركبا compound. والعنصر هو المادة التى لا يمكن تحليلها إلى مواد أبسط منها، فكل ذراته من نوع واحد فقط، أما المركب فهو المادة التى تتكون من التحام عدد من الذرات المختلفة لتكوِّن مايسمى الجزئmolecule ؛ فالمركب إذن هو الذى يتكون من اتحاد أكثر من عنصر، إثنين أو أكثر، ولهذا يمكن تحليل المركب أو تفكيكه إلى مواد أبسط منه، وهى العناصر الداخلة فى تركيبه. ونضرب لهذا مثالا؛ فالماء مركب يتكون كل جزئ من جزيئاته من اتحاد عنصرين هما الهيدروجين والأكسجين، حيث تتحد ذرتان من الهيدروجين مع ذرة واحدة من الأكسجين لتكون جزىء الماء؛ ولذلك نستطيع بوسائل معينة تحليل الماء إلى هيدروجين وأكسجين، ولكن لا يمكن تحليل الهيدروجين إلى مواد أبسط، وكذلك الأكسجين. مثال آخر وهو ثانى أكسيد الكربون؛ فكل جزئ من هذا الغاز يتكون من اتحاد ذرة واحدة من الكربون مع ذرتين من الأكسجين. نستطيع إذن أن نقرر بكل الثقة أن العنصر يتكون من ذرات من نوع واحد فقط، أما المركب فهو يتكون من جزيئات متشابهة، وكل جزئ بدوره يتكون من التحام عدة ذرات مختلفة، اثنتين أو أكثر، مع بعضها.

      ومن التعاون بين علمى الكيمياء والفلك تبين لنا أن عدد عناصرالأرض كلها 92 عنصرا فقط، أما المركبات فلا حصر لها. وقد تم ترتيب هذه العناصر حسب ثقل أنويتها فى جدول يعرف باسم الجدول الدورى للعناصر periodic table of the elements يبدأ بالهيدروجين وهو أخف العناصر وأبسطها من ناحية تكوين ذراته، وينتهى باليورانيوم وهو أثقل العناصر وأكثرها تعقيدا من ناحية تركيب ذراته (شكل 1 الجدول الدورى للعناصر). وقد وُجِدَ أن خصائص العناصر ترتبط إلى حد كبير بوضعها فى ذلك الجدول.

      ومن التطورات العلمية المتتابعة فى الربع الأول من القرن العشرين، تبين أن ذرات جميع المواد بلا استثناء تتكون من ثلاثة جسيمات particles رئيسية تم اكتشافها واحدا تلو الآخر، وهى: النيوترون neutron وهو جسيم متعادل الشحنة، والبروتون proton وهو جسيم يحمل شحنة كهربية موجبة وتبلغ كتلته مثل كتلة النيوترون تقريبا، والإلكترون electron وهو جسيم يحمل شحنة كهربائية سالبة تعادل فى مقدارها شحنة البروتون ولكن كتلته تعادل جزء من 1480 جزء من كتلة البروتون أو النيوترون (شكل 2 مكونات الذرة). وفى أية ذرة تتجمع البروتونات والنيوترونات مع بعضها فى مركز الذرة لتكون كتلة مركزية تعرف باسم النواة nucleus، أما الإلكترونات فإنها تسبح حول هذه النواة على أبعاد شاسعة جدا على المستوى الذري (شكل رقم 3 شكل مجس تخيلى للذرة). ولكى تكون الذرة متعادلة كهربائيا لابد من أن يكون عدد بروتوناتها فى النواة مساويا لعدد الإلكترونات التى تسبح حول هذه النواة. ولبيان ذلك سنذكر بعض الأمثلة: نأخذ أولا ذرة الهيدروجين، الذى يحتل المركز الأول فى الجدول الدورى، فذرة الهيدروجين تحتوى على بروتون واحد فقط، وهو الذى يكون النواة، ويسبح حوله إلكترون واحد فقط؛ لذلك فهى أبسط الذرات، وهى الذرة الوحيدة بين كل أنواع الذرات التى لا تحتوى نواتها على نيوترونات، ولذلك إذا ذكرنا نواة ذرة الهيدروجين فإننا نعنى أيضا البروتون. ثم يأتى بعد ذلك الهيليوم الذى يحتل المركز الثانى فى الجدول الدورى للعناصر وتحتوى نواة ذرته على بروتونين ونيوترونين، ويسبح حول هذه النواة إلكترونان. وإذا ذهبنا إلى العنصر الذى يحتل المركز الثالث فى الجدول الدورى نجده الليثيوم lithium، وهو من الفلزات القلوية وتحتوى نواته على ثلاثة بروتونات وثلاثة نيوترونات. وإذا أخذنا العنصر الرابع، وهو البريليوم، نجد أن نواته تحتوى على أربعة بروتونات وأربعة نيوترونات... وهكذا نجد أن ترتيب العناصر فى الجدول الدورى يتصاعد بزيادة بروتون لكل عنصر تالٍ حتى نصل إلى اليورانيوم الذى يحتل المركز الثانى والتسعين فى الجدول الدورى ونجد أن نواته تحتوى على 92 بروتونا. وعلى هذا نجد أن عدد البروتونات فى نواة أى عنصر هو الذى يحدد موقع هذا العنصر فى الجدول الدورى وهو الذى يحدد هوية هذا العنصر، ولا يوجد عنصران مختلفان يحملان نفس عدد البروتونات فى النواة؛ ولذلك يعتبر عدد البروتونات فى نواة أى عنصر بمثابة رقم بطاقته الشخصية التى لا يشاركه فيها أى عنصر آخر، أو بصمته التى ينفرد بها، ويطلق عليه تعبير الرقم الذرى atomic number للعنصر، وإذا تغير هذا الرقم فإن هوية العنصر تتغير إلى العنصر المقابل للرقم الجديد.

      ولكن ماذا عن النيوترونات والإلكترونات؟ نتناول النيوترونات أولا. مع التصاعد فى الجدول الدورى مع الرقم الذرى نجد أن عدد النيوترونات يساوى عدد البروتونات فى أنوية العناصر حتى العنصر رقم 8 وهو الأكسجين؛ حيث تحتوى نواته على 8 بروتونات و 8 نيوترونات، ولكن بعد الأكسجين نجد أن عدد النيوترونات يزيد عن عدد البروتونات بمقدار يتزايد مع الرقم الذرى حتى يصل إلى 146 نيوترونا فى نواة ذرة اليورانيوم، وحيث أن كتلة الإلكترون أقل بكثير من كتلة كل من النيوترون والبروتون، فإن كتلة الذرة تتركز أساسا فى نواتها، وإذا أخذنا كتلة النيوترون كوحدة لتقدير كتلة النواة يصبح مجموع عدد البروتونات والنيوترونات مساويا لكتلة الذرة، مع إهمال كتلة الإلكترونات، ولقد اصطلح على تسمية هذا العدد بالوزن الذرى atomic weight للعنصر. ولتوضيح هذا الأمر نأخذ ذرة الهيدروجين مرة أخرى كمثال؛ فهى تـتكون مـن بروتـون واحد فقــط فى النواة وإلكترون واحد فقـط يسبح حوله، وبذلك يكون العدد الذرى للهيدروجين.واحدا والوزن الذرى أيضا واحدا. وفى ذرة الأكسجين تحتوى النواة على ثمانية بروتونات وثمانية نيوترونات وتسبح حولها ثمانية إلكترونات، ولهذا يكون الرقم الذرى للأكسجين 8 والوزن الذرى له 16. أما ذرة اليورانيوم فنواتها تحتوى على 92 بروتونا و146 نيوترونا، ويسبح حولها 92 إلكترونا، ولهذا فالرقم الذرى لليورانيوم هو 92، ووزنه الذرى هو 238 (92+146).

      ومن الأمور الشائعة فى العناصر أن بعض الأنوية تحتوى على عدد أكبر أو أقل قليلا من النيوترونات عن العدد الموجود فى معظم ذرات العنصر؛ فنواة الأكسجين كما قلنا تحتوى على ثمانية بروتونات وثمانية نيوترونات ووزنها الذرى 16، وهذا هو الشائع، ومع ذلك توجد بعض ذرات الأكسجين التى تحتوى نواتها على عشرة نيوترونات بدلا من ثمانية فقط، وبهذا يصبح وزنها الذرى 18 وليس 16، ولذلك يقال إن للأكسجين نظيرين، بمعنى توأمين، أحدهما "الأكسجين16" وهو الشائع، والآخر يسمى "الأكسجين18" ويشكل حوالى 0.2% من مجموع ذرات الأكسجين. والفرق الوحيد بين هذين النظيرين للأكسجين أن أحدهما أثقل من الثانى بمقدار ضئيل جدا. وجميع العناصر لها نظائر إما واحدا أو أكثر، بيد أن أحد هذه النظائر هو الذى يشكل الغالبية العظمى للعنصر.

      وبعد أن تكلمنا عن النيوترونات نأتى للكلام عن الإلكترونات التى تسبح حول النواة وعددها يساوى عدد البروتونات القابعة فى النواة ولهذا تكون الذرة فى مجموعها متعادلة كهربائيا، وتسبح هذه الإلكترونات حول النواة بطريقة منتظمة تحكمها قواعد معينة تبين أنها تحتل مدارات ذات أشكال معقدة ولا يمكن رسمها على هيئة دوائر أو أشكال بيضاوية حول النواة كما تصورها معظم الكتب والمراجع، وما ذلك إلا تبسيط مبالغ فيه ويعطى انطباعا غير حقيقى عن توزيع الإلكترونات حول النواة. وإمعانا فى التبسيط يحلو للبعض تشبيه الذرة بالمجموعة الشمسية فيشبهون النواة بالشمس ويشبهون الإلكترونات بالكواكب التى تدور حولها، إلا أن هذا التشبيه أمر ظاهرى فقط ويعطى انطباعا زائفا عن التركيب الحقيقى للذرة يجعل من الصعب على الإنسان أن يتابع تركيب الذرة على مستويات متقدمة لأن ذلك يستلزم منه التخلص من هذا الانطباع الكاذب؛ فمن المعروف أن القوانين التى تحكم الأجرام الكبيرة فى الكون، نستطيع بها قياس حركة أى جرم من الأجرام التى نرصدها ونسجل هذه الحركة بأجهزتنا ومن ذلك يمكن تحديد مكان هذا الجرم بدقة فى أى لحظة مستقبلية، ونستطيع أيضا أن نحدد بدقة الخط الذى سيسير فيه منذ لحظة القياس إلى أى لحظة مستقبلية، وبهذه القوانين يمكننا أيضا تحديد النقطة التى ستسقط فيها أى مقذوفة نطقلها فى ظروف معروفة؛ وهكذا أمكن غزو الفضاء والنزول على سطح القمر وإطلاق الأقمار الصناعية وتحديد مساراتها بدقة. أما إذا نزلنا إلى عالم الذرة، وهو العالم متناهى الصغر، فإن قوانين نيوتن أو أينشتين تخفق ولا تعترف بها الجسيمات الذرية، مثل الإلكترونات و البروتونات والنيوترونات، وسائر الجسيمات الذرية العجيبة، فهذه الجسيمات تعرف وتطيع قوانين أخرى ذات معادلات معقدة؛ لهذا فإن ديناميكية الذرة تختلف عن ديناميكية المجموعة الشمسية اختلافا جوهريا، ويحسن بنا أن نتلافى التبسيط المخل عند الحديث عن طبيعة الذرة، خاصة إذا كنا نخاطب الأطفال والشباب فى المراحل الدراسية المبكرة، حتى لا نعيق تفهمهم لطبيعة عالم الذرة فى المراحل الدراسية المتقدمة.

      كذلك يمكن لأية ذرة أن تفقد إلكترونا أو أكثر من المدار الخارجى فتظهر عليها شحنة كهربائية موجبة مقدارها يعادل عدد الإكترونات التى فقدتها، وغالبا لا يزيد عدد هذه الإلكترونات عن أربعة، وفى هذه الحالة تسمى أيونا موجبا أو كاتيونا cation، وهذا يحدث مع الكثير من الفلزات ويؤدى إلى النشاط الكيميائى والقابلية للدخول فى تفاعلات كيميائية، ومن جهة أخرى يمكن فى ظروف معينة أن تقتنص الذرة إلكترونا أو أكثر وتتحول بذلك إلى أيون سالب أو أنيون anion له نشاط كيميائى أيضا. ونتيجة لذلك يمكن أن يلتحم كاتيون وأنيون مع بعضهما نتيجة التجاذب الكهربى بينهما، مثال ذلك ملح الطعام الذى يتكون من كاتيون صوديوم ذى شحنة كهربائية واحدة موجبة مع أنيون كلور ذى شحنة كهربائية واحدة سالبة لتكوين جزئ من كلوريد الصوديوم الذى تختلف خصائصه كلية عن كل من الصوديوم والكلور، وهذه إحدى صور الالتحام بين العناصر برابطة تسمى الرابطة الأيونية ionic bond لتكوين المركبات التى تسمى المركبات الأيونية ionic compounds نظرا لتكونها من أيونات، وهناك طرق أخرى.

        إلى هنا قد يتسائل القارئ: لماذا الخوض فى هذه المعلومات الأولية فى معرض حديثنا عن الوقود النووى والطاقة النووية؟ الغرض من هذا هو توضيح السبب فى إعطاء صفة النووية للوقود وللطاقة الناتجة عنه. وهذا ما سنبدأ بالدخول فيه بعد هذه المقدمة لنبين الفرق بين التفاعلات الكيميائية والنووية، والفرق بين الاحتراق الكيميائى والنووى، والفرق بين التفجير الكيميائى والنووى، وهى ثلاثة فروق هامة يجب فهمها كقاعدة لفهم الوقود النووى والطاقة النووية وبالتالى تكوين الثقافة النووية الشعبية مع شعب عليه أن يدخل العصر النووى.




هي أحد فروع علم الكيمياء. ويدرس بنية وخواص وتفاعلات المركبات والمواد العضوية، أي المواد التي تحتوي على عناصر الكربون والهيدروجين والاوكسجين والنتروجين واحيانا الكبريت (كل ما يحتويه تركيب جسم الكائن الحي مثلا البروتين يحوي تلك العناصر). وكذلك دراسة البنية تتضمن استخدام المطيافية (مثل رنين مغناطيسي نووي) ومطيافية الكتلة والطرق الفيزيائية والكيميائية الأخرى لتحديد التركيب الكيميائي والصيغة الكيميائية للمركبات العضوية. إلى عناصر أخرى و تشمل:- كيمياء عضوية فلزية و كيمياء عضوية لا فلزية.


إن هذا العلم متشعب و متفرع و له علاقة بعلوم أخرى كثيرة ويعرف بكيمياء الكائنات الحية على اختلاف أنواعها عن طريق دراسة المكونات الخلوية لهذه الكائنات من حيث التراكيب الكيميائية لهذه المكونات ومناطق تواجدها ووظائفها الحيوية فضلا عن دراسة التفاعلات الحيوية المختلفة التي تحدث داخل هذه الخلايا الحية من حيث البناء والتخليق، أو من حيث الهدم وإنتاج الطاقة .


علم يقوم على دراسة خواص وبناء مختلف المواد والجسيمات التي تتكون منها هذه المواد وذلك تبعا لتركيبها وبنائها الكيميائيين وللظروف التي توجد فيها وعلى دراسة التفاعلات الكيميائية والاشكال الأخرى من التأثير المتبادل بين المواد تبعا لتركيبها الكيميائي وبنائها ، وللظروف الفيزيائية التي تحدث فيها هذه التفاعلات. يعود نشوء الكيمياء الفيزيائية إلى منتصف القرن الثامن عشر . فقد أدت المعلومات التي تجمعت حتى تلك الفترة في فرعي الفيزياء والكيمياء إلى فصل الكيمياء الفيزيائية كمادة علمية مستقلة ، كما ساعدت على تطورها فيما بعد .