المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
زراعة الثوم
2024-11-22
تكاثر وطرق زراعة الثوم
2024-11-22
تخزين الثوم
2024-11-22
تأثير العوامل الجوية على زراعة الثوم
2024-11-22
Alternative models
2024-11-22
Lexical Phonology and its predecessor
2024-11-22

Brönsted-Lowry Definitions
16-7-2017
حق اقلية المساهمين في الشركة في الاعتراض على قرارات الهيئة العامة
2023-04-18
Concluding comments
28-1-2022
Why Are Some Genomes So Large
16-3-2021
وفد ثقيف في المدينة
2-7-2017
Genetic Information Can Be Provided by DNA or RNA
25-2-2021

Diffraction  
  
1471   04:49 مساءاً   date: 25-2-2016
Author : Diane Fisher Miller
Book or Source : Basics of Radio Astronomy
Page and Part : p38

Diffraction

When an electromagnetic wave passes by an obstacle in space, the wave is bent around the object. This phenomenon is known as diffraction. The effects of diffraction are usually very small, so we seldom notice it.

However, you can easily see the effect of diffraction for yourself. All you need is a source of light, such as a fluorescent or incandescent light bulb. Hold two fingers about 10 cm in front of one eye and make the space between your fingers very small, about 1 mm. Now look through the space between your fingers at the light source. With a little adjustment of the spacing, you will see a series of dark and light lines. These are caused by constructive and destructive interference of light diffracting around your fingers.

The reason diffraction occurs is not exactly obvious. Christian Huygens in the mid-1600s offered an explanation that, strange though it may seem, still nicely explains the observations. You will recall the inverse-square law of electromagnetic propagation. Electromagnetic energy may be considered to propagate from a point source in plane waves. (The illustration of reflection on page 34 shows the RF waves as planes.) The inverse square law applies not only to the source of the energy but also to any point on a plane wave. That is, from any point on the plane wave, the energy is propagated as if the point were the source of the energy. Thus, waves may be considered to be continuously created from every point on the plane and propagated in every direction.

For an infinite plane wave, the sideways propagation from each point is balanced by the propagation from its neighbors, so the wave continues on as a plane. However, when a wave encounters an object, the effect at the edges of the object is that the path of the radiation is slightly bent.

Now suppose the radiation (for example, light) is then intercepted by a surface (such as a screen) a short distance from the object. Then, compared to the parallel waves that have passed farther from the object’s edge (for example “waves B, C, and D” in the illustration below), the waves that have bent around the edges of the object (“waves A and E” for example) will have travelled a shorter or longer distance from the object to any given point on the screen.

The effect is that the light waves are out of phase when they arrive at any given point on the surface. If they are 180° out of phase, they cancel each other out (destructive interference) and produce a dark line. If they are in phase, they add together (constructive interference) and produce a bright line. Diffraction is most noticeable when an electromagnetic wave passing around an obstacle or through an opening in an obstacle (such as the slit between your fingers) is all of the same frequency, or monochromatic.

The picture below shows a typical diffraction pattern seen when observing a star through a telescope with a lens that focuses the light to a point (a converging lens).

Both optical and radio telescopes must take diffraction into account. In the case of radio telescopes, the observed wavelengths are quite long, thus creating very wide diffraction patterns, which can significantly detract from the resolution of the image. Thus more overlap and more separation are needed to resolve the image. Larger antennas and interferometric arrays are ways of dealing with loss of resolution due to diffraction.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.