المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الفيزياء
عدد المواضيع في هذا القسم 11580 موضوعاً
الفيزياء الكلاسيكية
الفيزياء الحديثة
الفيزياء والعلوم الأخرى
مواضيع عامة في الفيزياء

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
ميعاد زراعة الجزر
2024-11-24
أثر التأثير الاسترجاعي على المناخ The Effects of Feedback on Climate
2024-11-24
عمليات الخدمة اللازمة للجزر
2024-11-24
العوامل الجوية المناسبة لزراعة الجزر
2024-11-24
الجزر Carrot (من الزراعة الى الحصاد)
2024-11-24
المناخ في مناطق أخرى
2024-11-24

اعمـال يزيد
17-11-2016
Power Tower
22-7-2019
دلائل اعلمية الامام وقضائه
7-02-2015
الطريقة البرمائية - وجهة نظر جغرافية
22-8-2022
مسؤولية الآباء
2023-09-11
المـشتـقات المـاليـة Derivatives وأنـواعـها
2023-11-21

Kruskal-Szekeres Coordinates  
  
1886   03:28 مساءاً   date: 13-12-2015
Author : Leonard Susskind And James Lindesay
Book or Source : AN INTRODUCTION TO BLACK HOLES, INFORMATION, AND THE STRING THEORY REVOLUTION
Page and Part :


Read More
Date: 23-12-2015 1506
Date: 17-12-2015 1380
Date: 13-12-2015 1233

Kruskal-Szekeres Coordinates

Finally we can bring the black hole metric to the form

 (1.1)

That ρ R. A more accurate comparison with the original Schwarzschild metric gives the following requirements:

 (1.2)

 (1.3)

from which it follows that

 (1.4)

or

 (1.5)

R and ω can be thought of as radial and hyperbolic angular coordinates of a space which is conformal to flat 1+1 dimensional Minkowski space. Letting

 (1.6)

be “radial light-like” variables, the radial-time part of the metric takes the form

 (1.7)

The coordinates U, V are shown in Figure 1.1. The surfaces of constant r are the time like hyperbolas in Figure 1.1. As r tends to 2MG the hyperbolas become the broken straight lines H+ and H which we will call the extended past and future horizons. Although the extended horizons lie at finite values of the Kruskal-Szekeres coordinates, they are located at Schwarzschild time ±∞. Th us we see that a particle trajectory which crosses H+ in a finite proper time, crosses r = 2MG only after an infinite Schwarzschild time.

          

Fig. 1.1. U, V Kruskal-Szekeris coordinates.

     The region of Schwarzschild space with r < 2MG can be taken to be Region II.I n this region the surfaces of constant r are the space like hyperboloids

U V = positive constant (1.8)

The true singularity at r = 0 occurs at R2 = (MG)2, or

    U V = (MG)2     (1.9)

The entire maximal analytic extension of the Schwarzschild geometry is easily described in Kruskal-Szekeres coordinates. It is shown in Figure 1.2.

             

Fig. 1.2. Maximal analytic extension of Schwarzschild in Kruskal-Szekeris coordinates

A useful property of Kruskal-Szekeres coordinates is the fact that light rays and time like trajectories always lie within a two-dimensional light cone bounded by 45o lines. A radial moving light ray travels on a trajectory V = constant or U = constant. A non-radially directed light ray or time like trajectory always lies inside the two-dimensional light cone. With this in mind, it is easy to understand the causal properties of the black hole geometry. Consider a point P1 in Region I. A radially outgoing light ray from P1 will escape falling into the singularity as shown in Figure 1.3. An incoming light ray from P1 will eventually cross H+ and then hit the future singularity. Thus an observer in Region I can send messages to infinity as well as into Region II.

              

Fig. 1.3. Radial light rays from a point in Region I and Region II using Kruskal-Szekeris coordinates

      Consider next Region II. From any point P2 any signal must eventually hit the singularity. Furthermore, no signal can ever escape to Region I. Thus no observer who stays outside r = 2MG can ever be influenced by events in Region II. For this reason Region II is said to be behind the horizon. Regions III and IV, as we will see, are not relevant to the classical problem of black holes formed by collapsing matter. Nevertheless let us consider them. From Region III no signal can ever get to Region I, and so it is also behind the horizon. On the other hand, points in Region IV can communicate with Region I. Region I however cannot communicate with Region IV. All of this is usually described by saying that Regions II and III are behind the future horizon while Regions III and IV are behind the past horizon.




هو مجموعة نظريات فيزيائية ظهرت في القرن العشرين، الهدف منها تفسير عدة ظواهر تختص بالجسيمات والذرة ، وقد قامت هذه النظريات بدمج الخاصية الموجية بالخاصية الجسيمية، مكونة ما يعرف بازدواجية الموجة والجسيم. ونظرا لأهميّة الكم في بناء ميكانيكا الكم ، يعود سبب تسميتها ، وهو ما يعرف بأنه مصطلح فيزيائي ، استخدم لوصف الكمية الأصغر من الطاقة التي يمكن أن يتم تبادلها فيما بين الجسيمات.



جاءت تسمية كلمة ليزر LASER من الأحرف الأولى لفكرة عمل الليزر والمتمثلة في الجملة التالية: Light Amplification by Stimulated Emission of Radiation وتعني تضخيم الضوء Light Amplification بواسطة الانبعاث المحفز Stimulated Emission للإشعاع الكهرومغناطيسي.Radiation وقد تنبأ بوجود الليزر العالم البرت انشتاين في 1917 حيث وضع الأساس النظري لعملية الانبعاث المحفز .stimulated emission



الفيزياء النووية هي أحد أقسام علم الفيزياء الذي يهتم بدراسة نواة الذرة التي تحوي البروتونات والنيوترونات والترابط فيما بينهما, بالإضافة إلى تفسير وتصنيف خصائص النواة.يظن الكثير أن الفيزياء النووية ظهرت مع بداية الفيزياء الحديثة ولكن في الحقيقة أنها ظهرت منذ اكتشاف الذرة و لكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة. أصبحت الفيزياء النووية في هذه الأيام ضرورة من ضروريات العالم المتطور.