graph  |
 |
OEIS |
values |
alternating group graph  |
|
A000000 |
1, 1, 4, 20, 120, ... |
-Andrásfai graph ( ) |
 |
A000027 |
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ... |
-antiprism graph ( ) |
 |
A004523 |
2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, ... |
-Apollonian network |
 |
A000244 |
1, 3, 9, 27, 81, 243, 729, 2187, ... |
complete bipartite graph  |
 |
A000027 |
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ... |
complete graph  |
1 |
A000012 |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... |
complete tripartite graph  |
 |
A000027 |
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ... |
cycle graph ( ) |
 |
A004526 |
1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, ... |
empty graph  |
 |
A000027 |
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ... |
-folded cube graph ( ) |
 |
A058622 |
1, 1, 4, 5, 16, 22, 64, 93, 256, ... |
grid graph  |
![[n^2/2]](https://mathworld.wolfram.com/images/equations/IndependenceNumber/Inline52.svg) |
A000982 |
1, 2, 5, 8, 13, 18, 25, 32, 41, 50, 61, 72, ... |
grid graph  |
![[n^3/2]](https://mathworld.wolfram.com/images/equations/IndependenceNumber/Inline54.svg) |
A036486 |
1, 4, 14, 32, 63, 108, 172, 256, 365, 500, ... |
-halved cube graph |
|
A005864 |
1, 1, 4, 5, 16, 22, 64, 93, 256, ... |
-Hanoi graph |
 |
A000244 |
1, 3, 9, 27, 81, 243, 729, 2187, ... |
hypercube graph  |
 |
A000079 |
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ... |
-Keller graph |
{4 for n=1; 5 for n=2; 2^n otherwise" src="https://mathworld.wolfram.com/images/equations/IndependenceNumber/Inline61.svg" style="height:93px; width:132px" /> |
A258935 |
4, 5, 8, 16, 32, 64, 128, 256, 512, ... |
-king graph ( ) |
 |
A008794 |
1, 4, 4, 9, 9, 16, 16, 25, 25 |
-knight graph ( ) |
{4 for n=2; (1+(-1)^(n+1)+2n^2)/4 otherwise" src="https://mathworld.wolfram.com/images/equations/IndependenceNumber/Inline67.svg" style="height:65px; width:335px" /> |
A030978 |
4, 5, 8, 13, 18, 25, 32, 41, 50, 61, 72, ... |
Kneser graph  |
 |
|
|
-Mycielski graph |
{1 for n=1,2; 3·2^(n-3)-1 otherwise" src="https://mathworld.wolfram.com/images/equations/IndependenceNumber/Inline71.svg" style="height:61px; width:245px" /> |
A266550 |
1, 1, 2, 5, 11, 23, 47, 95, 191, 383, 767, ... |
Möbius ladder ( ) |
![2[n/2]-1](https://mathworld.wolfram.com/images/equations/IndependenceNumber/Inline74.svg) |
A109613 |
3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, ... |
odd graph  |
{1 for n=1; (2n-2; n-2) otherwise" src="https://mathworld.wolfram.com/images/equations/IndependenceNumber/Inline76.svg" style="height:85px; width:208px" /> |
A000000 |
1, 1, 4, 15, 56, 210, 792, 3003, 11440, ... |
-pan graph |
 |
A000000 |
2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, ... |
path graph  |
![[n/2]](https://mathworld.wolfram.com/images/equations/IndependenceNumber/Inline80.svg) |
A004526 |
1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ... |
prism graph ( ) |
 |
A052928 |
2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, ... |
-Sierpiński carpet graph |
|
|
4, 32, 256, ... |
-Sierpiński gasket graph |
|
|
1, 3, 6, 15, 42, ... |
star graph  |
{1 for n=1; n-1 otherwise" src="https://mathworld.wolfram.com/images/equations/IndependenceNumber/Inline87.svg" style="height:61px; width:157px" /> |
A028310 |
1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ... |
triangular graph ( ) |
 |
A004526 |
1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, ... |
-web graph ( ) |
![1/4[6n+(-1)^n-1]/4](https://mathworld.wolfram.com/images/equations/IndependenceNumber/Inline93.svg) |
A032766 |
4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, ... |
wheel graph  |
 |
A004526 |
1, 2, 2, 3, 3, 4, 4, 5, 5, ... |