تاريخ الرياضيات
الاعداد و نظريتها
تاريخ التحليل
تار يخ الجبر
الهندسة و التبلوجي
الرياضيات في الحضارات المختلفة
العربية
اليونانية
البابلية
الصينية
المايا
المصرية
الهندية
الرياضيات المتقطعة
المنطق
اسس الرياضيات
فلسفة الرياضيات
مواضيع عامة في المنطق
الجبر
الجبر الخطي
الجبر المجرد
الجبر البولياني
مواضيع عامة في الجبر
الضبابية
نظرية المجموعات
نظرية الزمر
نظرية الحلقات والحقول
نظرية الاعداد
نظرية الفئات
حساب المتجهات
المتتاليات-المتسلسلات
المصفوفات و نظريتها
المثلثات
الهندسة
الهندسة المستوية
الهندسة غير المستوية
مواضيع عامة في الهندسة
التفاضل و التكامل
المعادلات التفاضلية و التكاملية
معادلات تفاضلية
معادلات تكاملية
مواضيع عامة في المعادلات
التحليل
التحليل العددي
التحليل العقدي
التحليل الدالي
مواضيع عامة في التحليل
التحليل الحقيقي
التبلوجيا
نظرية الالعاب
الاحتمالات و الاحصاء
نظرية التحكم
بحوث العمليات
نظرية الكم
الشفرات
الرياضيات التطبيقية
نظريات ومبرهنات
علماء الرياضيات
500AD
500-1499
1000to1499
1500to1599
1600to1649
1650to1699
1700to1749
1750to1779
1780to1799
1800to1819
1820to1829
1830to1839
1840to1849
1850to1859
1860to1864
1865to1869
1870to1874
1875to1879
1880to1884
1885to1889
1890to1894
1895to1899
1900to1904
1905to1909
1910to1914
1915to1919
1920to1924
1925to1929
1930to1939
1940to the present
علماء الرياضيات
الرياضيات في العلوم الاخرى
بحوث و اطاريح جامعية
هل تعلم
طرائق التدريس
الرياضيات العامة
نظرية البيان
Shannon Capacity
المؤلف:
Alon, N
المصدر:
"Explicit Ramsey Graphs and Orthonormal Labelings." Elec. J. Combin. 1, No. R12
الجزء والصفحة:
...
27-4-2022
3078
Shannon Capacity
Let denote the independence number of a graph
. Then the Shannon capacity
, sometimes also denoted
, of
is defined as
where {{-0.65, 0.13913}, {-0.5, 0.5}}, BoxBaselineShift -> -0.1]" src="https://mathworld.wolfram.com/images/equations/ShannonCapacity/Inline6.svg" style="height:22px; width:14px" /> denoted the graph strong product (Shannon 1956, Alon and Lubetzky 2006). The Shannon capacity is an important information theoretical parameter because it represents the effective size of an alphabet in a communication model represented by a graph
(Alon 1998).
satisfies
The Shannon capacity is in general very difficult to calculate (Brimkov et al. 2000). In fact, the Shannon capacity of the cycle graph was not determined as
until 1979 (Lovász 1979), and the Shannon capacity of
is perhaps one of the most notorious open problems in extremal combinatorics (Bohman 2003).
Lovász (1979) showed that the Shannon capacity of the -Kneser graph is
, that of a vertex-transitive self-complementary graph (which includes all Paley graphs)
is
, and that of the Petersen graph is 4.
All graphs whose Shannon capacity is known attain their capacity either at (i.e., at their independence number; e.g., perfect graphs),
(e.g., self-complementary vertex-transitive graphs-including the Paley graphs), or else do not attain it at any value of
(e.g., the graph union of the cycle graph
with a singleton graph) (Alon and Lubetzky 2006).
REFERENCES
Alon, N. "Explicit Ramsey Graphs and Orthonormal Labelings." Elec. J. Combin. 1, No. R12, 1-8, 1994.
Alon, N. "The Shannon Capacity of a Union." Combinatorica 18, 301-310, 1998.
Alon, N. and Lubetzky, E. "The Shannon Capacity of a Graph and the Independence Numbers of Its Powers." IEEE Trans. Inform. Th. 52, 2172-2176, 2006.
Bohman, T. "A Limit Theorem for the Shannon Capacities of Odd Cycles. I." Proc. Amer. Math. Soc. 131, 3559-3569, 2003.
Bohman, T. and Holzman, R. "A Nontrivial Lower Bound on the Shannon Capacities of the Complements of Odd Cycles." IEEE Trans. Inform. Th. 49, 721-722, 2003.
Brimkov, V. E.; Codenotti, B.; Crespi, V.; and Leoncini, M. "On the Lovász Number of Certain Circulant Graphs." In Algorithms and Complexity. Papers from the 4th Italian Conference (CIAC 2000) Held in Rome, March 1-3, 2000 (Ed. G. Bongiovanni, G. Gambosi, and R. Petreschi). Berlin: Springer-Verlag, pp. 291-305, 2000.
Haemers, W. "An Upper Bound for the Shannon Capacity of a Graph." In Algebraic Methods in Graph Theory. Szeged, Hungary: pp. 267-272, 1978.
Haemers, W. "On Some Problems of Lovász Concerning the Shannon Capacity of a Graph." IEEE Trans. Inform. Th. 25, 231-232, 1979.Knuth, D. E. "The Sandwich Theorem." Electronic J. Combinatorics 1, No. 1, A1, 1-48, 1994. http://www.combinatorics.org/Volume_1/Abstracts/v1i1a1.html.
Lovász, L. "On the Shannon Capacity of a Graph." IEEE Trans. Inform. Th. IT-25, 1-7, 1979.
Riis, S. "Graph Entropy, Network Coding and Guessing." 27 Nov 2007. http://arxiv.org/abs/0711.4175v1.Schrijver, A. "A Comparison of the Delsarte and Lovász Bounds." IEEE Trans. Inform. Th. 25, 425-429, 1979.
Shannon, C. E. "The Zero-Error Capacity of a Noisy Channel." IRE Trans. Inform. Th. 2, 8-19, 1956.v
an Lint, J. H. and Wilson, R. M. A Course in Combinatorics. New York: Cambridge University Press, 1992.
الاكثر قراءة في نظرية البيان
اخر الاخبار
اخبار العتبة العباسية المقدسة

الآخبار الصحية
