Read More
Date: 8-5-2022
![]()
Date: 13-5-2022
![]()
Date: 22-5-2022
![]() |
A pair of vertices of a graph
is called an
-critical pair if
, where
denotes the graph obtained by adding the edge
to
and
is the clique number of
. The
-critical pairs are never edges in
. A maximal stable set
of
is called a forced color class of
if
meets every
-clique of
, and
-critical pairs within
form a connected graph.
In 1993, G. Bacsó conjectured that if is a uniquely
-colorable perfect graph, then
has at least one forced color class. This conjecture is called the bold conjecture, and implies the strong perfect graph theorem. However, a counterexample of the conjecture was subsequently found by Sakuma (1997).
Sakuma, T. "A Counterexample to the Bold Conjecture." J. Graph Th. 25, 165-168, 1997.
Sebő, A. "On Critical Edges in Minimal Perfect Graphs." J. Combin. Th. B 67, 62-85, 1996.
|
|
للعاملين في الليل.. حيلة صحية تجنبكم خطر هذا النوع من العمل
|
|
|
|
|
"ناسا" تحتفي برائد الفضاء السوفياتي يوري غاغارين
|
|
|
|
|
بمناسبة مرور 40 يومًا على رحيله الهيأة العليا لإحياء التراث تعقد ندوة ثقافية لاستذكار العلامة المحقق السيد محمد رضا الجلالي
|
|
|