المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9764 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر
اليمين واقسامه واحكامه
2024-10-06
النذر والعهد واليمين
2024-10-06
الخمس وموارده
2024-10-06
الانفال
2024-10-06
كفارة حلق الرأس
2024-10-06
كفارة جزاء الصيد
2024-10-06

الأفعال التي تنصب مفعولين
23-12-2014
صيغ المبالغة
18-02-2015
اولاد الامام الحسين (عليه السلام)
3-04-2015
الجملة الإنشائية وأقسامها
26-03-2015
معاني صيغ الزيادة
17-02-2015
انواع التمور في العراق
27-5-2016

Tournament  
  
1978   04:50 مساءً   date: 13-3-2022
Author : Chartrand, G
Book or Source : "Tournaments." §27.2 in Introductory Graph Theory. New York: Dover
Page and Part : ...


Read More
Date: 30-3-2022 1310
Date: 23-3-2022 1556
Date: 11-5-2022 1012

Tournament

 

Tournament

A complete oriented graph (Skiena 1990, p. 175), i.e., a graph in which every pair of nodes is connected by a single uniquely directed edge. The first and second 3-node tournaments shown above are called a transitive triple and cyclic triple, respectively (Harary 1994, p. 204).

Tournaments (also called tournament graphs) are so named because an n-node tournament graph correspond to a tournament in which each member of a group of n players plays all other n-1 players, and each game results in a win for one player and a loss for the other. A so-called score sequence can be associated with every tournament giving the set of scores that would be obtained by the players in the tournament, with each win counting as one point and each loss counting as no points. (A different scoring system is used to compute a tournament's so-called tournament matrix, with 1 point awarded for a win and -1 points for a loss.) The score sequence for a given tournament is obtained from the set of outdegrees sorted in nondecreasing order.

The number a(n) of nonisomorphic tournaments on n=2, 3, 4, ... nodes are 1, 2, 4, 12, 56, 456, ... (OEIS A000568; Moon 1968; Goldberg and Moon 1970; Harary and Palmer 1973, pp. 126 and 245; Reid and Beineke 1978). Davis (1954) and Harary (1957) obtained a formula for these numbers as a function of n using the Pólya enumeration theorem. For a symmetric group S_n, define

 s(pi)={0   if pi has any cycle of even length; n(pi)   otherwise,

(1)

where

 n(pi)=(c(pi))/(n!)=1/(1^(p_1)p_1!2^(p_2)p_2!...n^(p_n)p_n!),

(2)

with c(pi) the number of group elements in the conjugacy class of pi in S_n, and p_k is the number of cycles of length k in the disjoint-cycle representation of any member of the class. Define

 d(pi)=1/2sum_(i=1)^np_i(ip_i-1)-sum_(i<j)p_jp_jGCD(i,j),

(3)

where GCD(i,j) is the greatest common divisor of i and j. Then

 a(n)=sums(pi)2^(d(pi))

(4)

(Davis 1954).

Every tournament contains an odd number of Hamiltonian paths (Rédei 1934; Szele 1943; Skiena 1990, p. 175). However, a tournament has a directed Hamiltonian cycle iff it is strongly connected (Foulkes 1960; Harary and Moser 1966; Skiena 1990, p. 175).

The term "tournament" also refers to an arrangement by which teams or players play against certain other teams or players in order to determine who is the best. In a "cup" tournament of n=2^k teams, teams play pairwise in a sequence of 1/2^(k-1)-finals, ..., 1/8-finals, quarterfinals, semifinals, and finals, with winners from each round playing other winners in the next round and losers being eliminated at each round. The second-place prize is usually awarded to the team that loses in the finals. However, this practice is unfair since the second-place team has not been required to play against the teams that were eliminated by the first-place (and presumably best) team, and therefore might actually be worse than one of the teams eliminated earlier by the best team (Steinhaus 1999).

In general, to fairly determine the best two players from n contestants, n-1+log_2(n-1) rounds are required (Steinhaus 1999, p. 55).


REFERENCES

Boesch, F. and Tindell, R. "Robbins' Theorem for Mixed Graphs." Amer. Math. Monthly 87, 716-719, 1980.

Chartrand, G. "Tournaments." §27.2 in Introductory Graph Theory. New York: Dover, pp. 155-161, 1985.

Chvátal, V. and Thomassen, C. "Distances in Orientations of Graphs." J. Combin. Th. B 24, 61-75, 1978.

Davis, R. L. "Structure of Dominance Relations." Bull. Math. Biophys. 16, 131-140, 1954.

Foulkes, J. D. "Directed Graphs and Assembly Schedules." In Proc. Symp. Appl. Math. Providence, RI: Amer. Math. Soc., pp. 218-289, 1960.

Goldberg, M. and Moon, J. W. "On the Composition of Two Tournaments." Duke Math. J. 37, 323-332, 1970.

Harary, F. "The Number of Oriented Graphs." Mich. Math. J. 4, 221-224, 1957.

Harary, F. "Tournaments." In Graph Theory. Reading, MA: Addison-Wesley, pp. 204-208, 1994.

Harary, F. and Moser, L. "The Theory of Round Robin Tournaments." Amer. Math. Monthly 73, 231-246, 1966.

Harary, F. and Palmer, E. M. "On the Problem of Reconstructing a Tournament from Subtournaments." Monatsh. für Math. 71, 14-23, 1967.

Harary, F. and Palmer, E. M. "Tournaments." §5.2 in Graphical Enumeration. New York: Academic Press, pp. 124-127, 1973.

Moon, J. W. Topics on Tournaments. New York: Holt, Rinehart, and Winston, p. 87, 1968.

Ore, Ø. Graphs and Their Uses. New York: Random House, 1963.Rédei, L. "Ein Kombinatorischer Satz." Acta Litt. Szeged. 7, 39-43, 1934.

Reid, K. B. and Beineke, L. W. "Tournaments." In Selected Topics in Graph Theory (Ed. L. W. Beineke and R. J. Wilson). New York: Academic Press, pp. 169-204, 1978.

Roberts, F. S. Graph Theory and Its Applications to Problems of Society. Philadelphia, PA: SIAM, 1978.

Ruskey, F. "Information on Score Sequences." http://www.theory.csc.uvic.ca/~cos/inf/nump/ScoreSequence.html.Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, 1990.

Sloane, N. J. A. Sequence A000568/M1262 in "The On-Line Encyclopedia of Integer Sequences."Steinhaus, H. Mathematical Snapshots, 3rd ed. New York: Dover, pp. 54-55, 1999.

Szele, T. "Kombinatorische Untersuchungen über den gerichteten vollständigen Graphen." Mat. Fiz. Lapok 50, 223-256, 1943.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.