المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
نظرية البقع الشمسية Sun Spots
2024-11-24
المراقبة
2024-11-24
المشارطة
2024-11-24
الحديث المرسل والمنقطع والمعضل.
2024-11-24
اتّصال السند.
2024-11-24
ما يجب توفّره في الراوي للحكم بصحّة السند (خلاصة).
2024-11-24

ازدهار الخطابة
8-4-2021
Vowels and diphthongs NEAR, SQUARE
2024-03-13
سقوط الحكم الأموي
3-04-2015
قانون أوم
26-9-2019
خصائص الخدمات الصحية - قلة التنميط والتوحيد للخدمات الصحية
2023-02-15
Factors That Affect the Magnitude of Δo
20-6-2019

Clique  
  
2482   01:58 صباحاً   date: 4-3-2022
Author : Harary, F
Book or Source : Graph Theory. Reading, MA: Addison-Wesley, 1994.
Page and Part : ...


Read More
Date: 3-8-2016 1919
Date: 23-4-2022 1665
Date: 22-5-2022 2716

Clique

 

 

Clique

A clique of a graph G is a complete subgraph of G, and the clique of largest possible size is referred to as a maximum clique (which has size known as the clique number omega(G)). However, care is needed since maximum cliques are often called simply "cliques" (e.g., Harary 1994). A maximal clique is a clique that cannot be extended by including one more adjacent vertex, meaning it is not a subset of a larger clique. Maximum cliques are therefore maximal cliqued (but not necessarily vice versa).

Cliques arise in a number of areas of graph theory and combinatorics, including graph coloring and the theory of error-correcting codes.

A clique of size k is called a k-clique (though this term is also sometimes used to mean a maximal set of vertices that are at a distance no greater than k from each other). 0-cliques correspond to the empty set (sets of 0 vertices), 1-cliques correspond to vertices, 2-cliques to edges, and 3-cliques to 3-cycles.

The clique polynomial is of a graph G is defined as

 C_G(x)=sum_(k=0)^(omega(G))c_kx^k,

where c_k is the number of cliques of size k, with c_0=1c_1=|G| equal to the vertex count of Gc_2=m(G) equal to the edge count of G, etc.

In the Wolfram Language, the command FindClique[g][[1]] can be used to find a maximum clique, and FindClique[gLength /@ FindClique[g], All] to find all maximum cliques. Similarly, FindClique[gInfinity] can be used to find a maximal clique, and FindClique[gInfinityAll] to find all maximal cliques. To find all cliques, enumerate all vertex subsets s and select those for which CompleteGraphQ[gs] is true.

In general, FindClique[gn] can be used to find a maximal clique containing at least n vertices, FindClique[gnAll] to find all such cliques, FindClique[g{n}] to find a clique containing at exactly n vertices, and FindClique[g{n}All] to find all such cliques.

The numbers of cliques, equal to the clique polynomial evaluated at x=1, for various members of graph families are summarized in the table below, where the trivial 0-clique represented by the initial 1 in the clique polynomial is included in each count.

graph family OEIS number of cliques
alternating group graph A308599 X, 2, 8, 45, 301, 2281, ...
Andrásfai graph A115067 4, 11, 21, 34, 50, 69, 91, ...
n×n antelope graph A308600 2, 5, 10, 17, 34, 61, 98, ...
antiprism graph A017077 X, X, 27, 33, 41, 49, 57, 65, ...
Apollonian network A205248 16, 40, 112, 328, 976, 2920, ...
barbell graph A000079 X, X, 16, 32, 64, 128, 256, 512, ...
n×n bishop graph A183156 2, 7, 22, 59, 142, 319, ...
n×n black bishop graph A295909 2, 4, 14, 30, 82, 160, 386, ...
book graph S_(n+1) square P_2 A016897 9, 14, 19, 24, 29, 34, 39, 44, ...
Bruhat graph A139149 2, 4, 13, 61, 361, 2521, 20161, ...
centipede graph A008586 4, 8, 12, 16, 20, 24, 28, 32, 36, ...
cocktail party graph K_(n×2) A000244 3, 9, 27, 81, 243, 729, 2187, ...
complete graph K_n A000079 2, 4, 8, 16, 32, 64, 128, 256, ...
complete bipartite graph K_(n,n) A000290 4, 9, 16, 25, 36, 49, 64, 81, 100, ...
complete tripartite graph K_(n,n,n) A000578 8, 27, 64, 125, 216, 343, 512, ...
2n-crossed prism graph A017281 X, 21, 31, 41, 51, 61, 71, ...
crown graph K_2 square K_n^_ A002061 X, X, 13, 21, 31, 43, 57, 73, 91, ...
cube-connected cycle graph A295926 X, X, 69, 161, 401, 961, 2241, 5121, ...
cycle graph C_n A308602 X, X, 8, 9, 11, 13, 15, 17, 19, ...
dipyramidal graph A308603 X, X, 24, 27, 33, 39, 45, 51, 57, 63, ...
empty graph K^__n A000027 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
Fibonacci cube graph A291916 4, 6, 11, 19, 34, 60, 106, 186, ...
n×n fiveleaper graph A308604 X, 4, 16, 25, 57, 129, 289, 641, 1409, ...
folded cube graph A295921 3, 15, 24, 56, ...
gear graph A016873 X, X, 17, 22, 27, 32, 37, 42, 47, 52, ...
grid graph P_n square P_n A056105 2, 9, 22, 41, 66, 97, 134, 177, 226, 281, ...
grid graph P_n square P_n square P_n A295907 2, 21, 82, 209, 426, 757, 1226, 1857, ...
halved cube graph A295922 2, 4, 16, 81, 393, 1777, ...
Hanoi graph A295911 8, 25, 76, 229, 688, ...
helm graph A016933 X, X, 22, 26, 32, 38, 44, 50, 56, ...
hypercube graph Q_n A132750 4, 9, 21, 49, 113, 257, 577, 1281, 2817, ...
Keller graph A295902 5, 57, 14833, 2290312801, ...
n×n king graph A295906 2, 16, 50, 104, 178, 272, 386, ...
n×n knight graph A295905 2, 5, 18, 41, 74, 117, 170, 233, 306, 389, ...
ladder graph P_2 square P_n A016897 4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, ...
ladder rung graph nP_2 A016777 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, ...
Menger sponge graph A292209 45, 1073, 22977, ...
Möbius ladder M_n A016861 X, X, 16, 21, 26, 31, 36, 41, 46, 51, ...
Mycielski graph A199109 2, 4, 11, 32, 95, 284, 851, 2552, 7655, ...
odd graph O_n A295934 2, 8, 26, 106, 442, 1849, 7723, ...
pan graph A005408 X, X, 10, 11, 13, 15, 17, 19, 21, 23, ...
path graph P_n A005843 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, ...
path complement graph P^__n A000045 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
permutation star graph A139149 2, 4, 13, 61, 361, 2521, ...
polygon diagonal intersection graph A300524 X, X, 8, 18, 41, 80, 169, 250, ...
prism graph K_2 square C_n A016861 X, X, 18, 21, 26, 31, 36, 41, 46, 51, ...
n×n queen graph A295903 2, 16, 94, 293, 742, 1642, 3458, 7087, ...
rook graph K_n square K_n A288958 2, 9, 34, 105, 286, 721, 1730, ...
rook complement graph K_n square K_n^_ A002720 2, 7, 34, 209, 1546, 13327, 130922, ...
Sierpiński carpet graph A295932 17, 153, 1289, 10521, ...
Sierpiński sieve graph A295933 8, 20, 55, 160, 475, ...
Sierpiński tetrahedron graph A292537 6, 59, 227, 899, 3587, 14339, ...
star graph S_n A005843 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, ...
sun graph A295904 X, X, 20, 32, 52, 88, 156, 288, 548, ...
sunlet graph C_n circledot K_1 A016813 X, X, 14, 17, 21, 25, 29, 33, 37, 41, 45, ...
tetrahedral graph A289837 X, X, X, X, X, 261, 757, 2003, 5035, ...
torus grid graph C_n square C_n A056107 X, X, 34, 49, 76, 109, 148, 193, ...
transposition graph A308606 2, 4, 16, 97, 721, 6121, ...
triangular graph A290056 X, 2, 8, 27, 76, 192, 456, 1045, ...
triangular grid graph A242658 8, 20, 38, 62, 92, 128, 170, 218, ...
triangular snake graph TS_n A016789 2, X, 8, X, 14, X, 20, X, 26, X, 32, X, ...
web graph A016993 X, X, 24, 29, 36, 43, 50, 57, 64, 71, 78, ...
wheel graph W_n A308607 X, X, X, 16, 18, 22, 26, 30, 34, 38, 42, 46, ...
n×n white bishop graph A295910 X, 4, 9, 30, 61, 160, 301, 71, ...

Closed forms for some of these are summarized in the table below.

 

 

graph family number of cliques
Andrásfai graph 1/2(n+2)(3n-1)
antiprism graph {26   for n=3; 8n   for n>=4
book graph S_(n+1) square P_2 5n+3
cocktail party graph K_(n×2) 3^n-1
complete bipartite graph K_(n,n) 2^n-1
complete graph K_n n(n+2)
complete tripartite graph K_(n,n,n) n(n^2+3n+3)
2n-crossed prism graph 10n
cycle graph C_n {7   for n=3; 2n   for n>=4
empty graph K^__n n
gear graph 5n+11
helm graph {21   for n=3; 8n   for n>=4
hypercube graph Q_n 2^(n-1)(n+2)
ladder graph 5n-2
ladder rung graph nP_2 3n
Möbius ladder M_n 5(n+2)
pan graph {9   for n=3; 2(n+1)   for n>=4
path graph P_n 2n-1
prism graph Y_n {17   for n=3; 5n   for n>=4
star graph S_n 2n-1
sun graph 2^n+4n-1
sunlet graph C_n circledot K_1 {13   for n=3; 4n   for n>=4
web graph {23   for n=3; 7n   for n>=4
wheel graph W_n

{15   for n=3; 4n-3   for n>=4

 


REFERENCES

Harary, F. Graph Theory. Reading, MA: Addison-Wesley, 1994.

Pemmaraju, S. and Skiena, S. Computational Discrete Mathematics: Combinatorics and Graph Theory in Mathematica. Cambridge, England: Cambridge University Press, pp. 247-248, 2003.

Skiena, S. "Maximum Cliques." §5.6.1 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 215 and 217-218, 1990.

Skiena, S. S. "Clique and Independent Set" and "Clique." §6.2.3 and 8.5.1 in The Algorithm Design Manual. New York: Springer-Verlag, pp. 144 and 312-314, 1997.

 




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.