المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
{افان مات او قتل انقلبتم على اعقابكم}
2024-11-24
العبرة من السابقين
2024-11-24
تدارك الذنوب
2024-11-24
الإصرار على الذنب
2024-11-24
معنى قوله تعالى زين للناس حب الشهوات من النساء
2024-11-24
مسألتان في طلب المغفرة من الله
2024-11-24


Graph Cycle  
  
2303   09:45 صباحاً   date: 28-2-2022
Author : Ahrens, W
Book or Source : "Über das Gleichungssystem einer Kirchhoffschen galvanischen Stromverzweigung." Math. Ann. 49
Page and Part : ...


Read More
Date: 19-3-2022 1397
Date: 20-3-2022 1553
Date: 26-4-2022 1568

Graph Cycle

A cycle of a graph G, also called a circuit if the first vertex is not specified, is a subset of the edge set of G that forms a path such that the first node of the path corresponds to the last. A maximal set of edge-disjoint cycles of a given graph g can be obtained using ExtractCycles[g] in the Wolfram Language package Combinatorica` .

A cycle that uses each graph vertex of a graph exactly once is called a Hamiltonian cycle.

A graph containing no cycles of length three is called a triangle-free graph, and a graph containing no cycles of length four is called a square-free graph.

A graph containing no cycles of any length is known as an acyclic graph, whereas a graph containing at least one cycle is called a cyclic graph. A graph possessing exactly one (undirected, simple) cycle is called a unicyclic graph. A connected acyclic graph is known as a tree, and a possibly disconnected acyclic graph is known as a forest.

The length of the shortest graph cycle (if any) in a given graph is known as the girth, and the length of a longest cycle is known as the graph circumference.

The minimum number of swaps between vertices in a random circular embedding of a cycle to put in its standard configuration is considered by Björner and Wachs (1982) and (Stanley 1999).

An acyclic graph is bipartite, and a cyclic graph is bipartite iff all its cycles are of even length (Skiena 1990, p. 213).

The number of (undirected) closed k-walks in a graph with adjacency matrix A is given by Tr(A^k), where Tr(A) denotes the matrix trace. In order to compute the number c_k of k-cycles, all closed k-walks that are not cycles must be subtracted. One would think that by analogy with the matching-generating polynomial, independence polynomial, etc., a cycle polynomial whose coefficients are the numbers of cycles of length k would be defined. While no such polynomial seems not to have been defined in the literature (instead, "cycle polynomials" commonly instead refers to a polynomial corresponding to cycle indices of permutation groups), they are defined in this work.

The number of k-cycles c_k is related to the matrix of path counts P_k by

 c_k=1/(2k)Tr(P_(k-1)A),

(1)

where Tr denotes the matrix trace and A is the adjacency matrix (Perepechko and Voropaev).

Graphs corresponding to closed walks of length k are known as k-cyclic graphs, or "C_k-graphs" for short. The numbers of C_k-graphs for k=3, 4, ... are 1, 3, 3, 10, 12, 35, 58, 160, 341, 958, 2444, 7242, 21190, 67217, 217335, ... (OEIS A081809; FlowProblems).

Harary and Manvel (1972) gave the following closed forms for small k:

6c_3 = Tr(A^3)

(2)

8c_4 = Tr(A^4)-2m-2sum_(i!=j)a_(ij)^((2))

(3)

= sum_(i)a_(ii)^((4))+sum_(i)a_(ii)^((2))-2sum_(i)sum_(j)a_(ij)^((2))

(4)

= Tr(A^4)+Tr(A^2)-2Tr(diag(A^2)^2)

(5)

= Tr(A^4)-2m-2sum_(i)d_i(d_i-1)

(6)

= Tr(A^4)+Tr(A^2)-2sum_(i)d_i^2

(7)

10c_5 = Tr(A^5)-5Tr(A^3)-5sum_(i=1)(sum_(j)a_(ij)-2)a_(ii)^((3))

(8)

(with c_4 variants from Perepechko and Voropaev), where m is the number of edges of the graph, a_(ij)^((k)) denotes the i,j element of A^kdiag(A) is the matrix formed from the diagonal elements of A, and d_i=a_(ii)^((2)) is the ith vertex degree. Alon et al. (1997) extended these results up to k=7, although with explicit formulas given only up to k=5. Exact formulas for c_6 and c_7 are given by

 12c_6=sum_(i)a_(ii)^((6))-3sum_(n=1)^n(a_(ii)^((3)))^2+9sum_(i)sum_(j)(a_(ij)^((2)))^2a_(ij)-6sum_(i)a_(ii)^((4))d_i+6sum_(i)a_(ii)^((4))-4sum_(i)a_(ii)^((3))+4sum_(i)d_i^3+3sum_(i)sum_(j)a_(ij)^((3))-12sum_(i)d_i^2+4sum_(i)d_i 
14c_7=Tr(A^7)-7sum_(i)a_(ii)^((4))a_(ii)^((3))+7sum_(i)sum_(j)(a_(ij)^((2)))^3a_(ij)-7sum_(i)a_(ii)^((5))d_i+21sum_(i)sum_(j)a_(ij)^((3))a_(ij)^((2))a_(ij)+7Tr(A^5)-28sum_(i)sum_(j)(a_(ij)^((2)))^2a_(ij)+7sum_(i)sum_(j)a_(ij)^((2))a_(ij)d_id_j+14sum_(i)a_(ii)^((3))d_i^2+7sum_(i)sum_(j)a_(ii)^((3))a_(ij)^((2))-77sum_(i)a_(ii)^((3))d_i+56Tr(A^3),

(9)

where d_i=a_(ii)^((2)) is the ith vertex degree (Perepechko and Voropaev; S. Perepechko, pers. comm., Jan. 4, 2014).

Khomenko and Golovko (1972) gave a formula giving the number of cycles of any length, but its computation requires computing and performing matrix operations involving all subsets up to size n-2, making it computationally expensive. A simplified and improved version of the Khomenko and Golovko formula is given by

 c_k=1/(2k)sum_(i=2)^k(-1)^(k-i)(n-i; n-k)sum_(|S|=n-i)Tr(A_S^k)

(10)

for k=3, 4, ..., n, where A_S^k is the kth matrix power of the submatrix of the adjacency matrix A with the subset S of rows and columns deleted (Perepechko and Voropaev). The case k=n therefore gives the number of Hamiltonian cycles.

Giscard et al. (2016) gave the formula for the number of undirected k-cycles in a graph G as

 c_k=((-1)^k)/(2k)sum_(H≺_(conn)G)(|N(H)|; k-|H|)(-1)^(|H|)Tr(A_H^k),

(11)

where the sum is over connected induced subgraphs H of GN(H) denotes the number of neighbors of H in G (namely vertices v of G which are not in H and such that there exists at least one edge from v to a vertex of H), Tr(A) denotes the matrix trace, and A_H^k is the kth matrix power of the adjacency matrix of the graph H.

Let nu denote the total number of undirected cycles in a graph and mu the circuit rank. Then

 mu<=nu<=2^mu-1

(12)

(Kirchhoff 1847, Ahrens 1897, König 1936, Volkmann 1996). The total numbers of undirected cycles for all simple graphs of orders n=1, 2, ... are 0, 0, 1, 13, 143, 1994, 39688, ... (OEIS A234601).

 mu(G)=nu(G)

(13)

iff any two cycles have no edge in common (Volkmann 1996). Among connected graphs, the equality therefore holds for (and only for) cactus graphs. Mateti and Deo (1976) proved that there are "essentially" only four graphs with nu=2^mu-1: the complete graphs K_3 and K_4, the complete bipartite graph K_(3,3), and K_4-e (Volkmann 1996).

The total number of undirected cycles also satisfies

 nu>=n(1/2delta-1)+1

(14)

and

 nu>=1/2delta(delta-1),

(15)

where n is the number of vertices and delta is the minimum vertex degree (Volkmann 1996).

The following table gives the number of undirected graph cycles for various classes of graphs.

graph OEIS sequence
Andrásfai graph A234602 0, 1, 29, 1014, 72273, 9842527, ...
antiprism graph A077263 X, X, 63, 179, 523, 1619, 5239, 17379, ...
bishop graph A234636 X, 0, 3, 106, 17367, 24601058, 638520866656, ...
(n,n)-black bishop graph A234603 X, X, X, 53, 12424, 12300529, ...
cocktail party graph K_(n×2) A167987 0, 1, 63, 2766, 194650, 21086055, 3257119761, ...
complete bipartite graph K_(n,n) A070968 0, 1, 15, 204, 3940, 113865, 4662231, ...
complete tripartite graph K_(n,n,n) A234616 1, 63, 6705, 1960804, 1271288295, 1541975757831, ...
complete graph K_n A002807 1, 7, 37, 197, 1172, 8018, ...
2n-crossed prism graph A234617 28, 107, 380, 1345, 4878, 18219, ...
crown graph A234618 1, 28, 586, 16676, 674171, 36729512, ...
cube-connected cycle A000000 X, X, 2664, ...
cycle graph C_n A000012 1, 1, 1, 1, 1, 1, 1, 1, ...
folded cube graph A234619 0, 0, 7, 204, 322248, ...
grid graph P_n square P_n A140517 X, 1, 13, 213, 9349, 122236, 487150371, ...
grid graph P_n square P_n square P_n A234620 X, 28, 3426491, ...
halved cube graph A234621 0, 0, 7, 2766, 4678134804, ...
Hanoi graph A000000 1, 11, 1761, ...
hypercube graph Q_n A085408 0, 1, 28, 14704, 51109385408, ...
(n,n)-king graph A234622 X, 7, 348, 136597, 545217435, 21964731190911, ...
(n,n)-knight graph A234623 X, 0, 1, 222, 128769, 959427728, ...
n-ladder graph A000217 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, ...
Möbius ladder M_n A020873 X, X, 15, 29, 53, 95, 171, 313, 585, ...
Mycielski graph A234625 0, 0, 1, 337, 445228418, ...
odd graph A301558 0, 1, 57, 872137842, ...
permutation star graph A000000 0, 0, 1, 5442, ...
prism graph Y_n A077265 14, 28, 52, 94, 170, ...
(n,n)-queen graph A234626 0, 7, 8215, 2080941496, 269529670654115055, ...
rook graph K_n square K_n A234624 0, 1, 312, 3228524, 6198979538330, ...
Sierpiński sieve graph A234634 1, 11, 1033, ...
sun graph A234627 X, X, 11, 44, 198, 1036, 6346, 45019, 364039, ...
sunlet graph C_n circledot K_1 A000000 X, X, 1, 1, 1, 1, 1, 1, 1, 1, ...
triangular graph A234629 0, 1, 63, 15703, 58520309, ...
web graph A077265 14, 28, 52, 94, 170, 312, 584, 1114, ...
wheel graph W_n A002061 7, 13, 21, 31, 43, 57, ...
(n,n)-white bishop graph A234630 X, X, X, 53, 4943, 12300529, ...

Closed forms for some of these classes of graphs are summarized in the following table.

graph formula
antiprism graph a_n=6a_(n-1)-11a_(n-2)+8a_(n-3)-3a_(n-4)+2a_(n-5)-a_(n-6)
complete bipartite graph K_(n,n) 1/2sum_(k=2)^(n)k!(k-1)!(n; k)^2
complete graph K_n 1/2sum_(k=3)^(n)(k-1)!(n; k)=1/4n[2_3F_1(1,1,1-n;2;-1)-n-1]
cycle graph C_n 1
ladder graph (n; 2)
Möbius ladder 1+2^n+n(n-1)
prism graph Y_n 2^n+n(n-1)
sunlet graph C_n circledot K_1 1
web graph f 2^n+n(n-1)
wheel graph W_n 2(n-1)

REFERENCES

Ahrens, W. "Über das Gleichungssystem einer Kirchhoffschen galvanischen Stromverzweigung." Math. Ann. 49, 311-324, 1897.

Alon, N.; Yuster, R.; and Zwick, U. "Finding and Counting Given Length Cycles." Algorithmica 17, 209-223, 1997.

Björner, A. and Wachs, M. "Bruhat Order of Coxeter Groups and Shellability." Adv. Math. 43, 87-100, 1982.

FlowProblem. "C_k-Graphs." http://flowproblem.ru/cycles/explicit-formulae/ck-graphs.Giscard, P.-L.; Kriege, N.; and Wilson, R. C. "A General Purpose Algorithm for Counting Simple Cycles and Simple Paths of Any Length." 16 Dec 2016. 

https://arxiv.org/pdf/1612.05531.pdf.Harary, F. and Manvel, B. "On the Number of Cycles in a Graph." Mat. Časopis Sloven. Akad. Vied 21, 55-63, 1971.

Karavaev, A. M. "FlowProblem: Statistics of Simple Cycles." http://flowproblem.ru/paths/statistics-of-simple-cycles.Khomenko, N. P. and Golovko, L. D. "Identifying Certain Types of Parts of a Graph and Computing Their Number." Ukr. Math. J. 24, 313-321, 1972.

Kirchhoff, G. "Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird." Ann. d. Phys. Chem. 72, 497-508, 1847.

König, D. Theorie der endlichen und unendlichen Graphen. Leipzig, Germany: Akademische Verlagsgesellschaft, 1936.

Mateti, P. and Deo, N. "On Algorithms for Enumerating All Circuits of a Graph." SIAM J. Comput. 5, 90-99, 1976.

Perepechko, S. N. and Voropaev, A. N. "The Number of Fixed Length Cycles in an Undirected Graph. Explicit Formulae in Case of Small Lengths."Skiena, S. "Cycles in Graphs." §5.3 in Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 188-202, 1990.

Sloane, N. J. A. Sequences A000012/M0003, A002061/M2638, A002807/M4420, A077263, A077265, A081809, and A234601 in "The On-Line Encyclopedia of Integer Sequences."Stanley, R. P. Enumerative Combinatorics, Vol. 1. Cambridge, England: Cambridge University Press, 1999.

Volkmann, L. "Estimations for the Number of Cycles in a Graph." Per. Math. Hungar. 33, 153-161, 1996.

West, D. B. Introduction to Graph Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, pp. 5 and 20, 2000.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.