Read More
Date: 12-1-2022
1064
Date: 5-1-2022
956
Date: 16-1-2022
1446
|
A version of set theory which is a formal system expressed in first-order predicate logic. Zermelo-Fraenkel set theory is based on the Zermelo-Fraenkel axioms.
Zermelo-Fraenkel set theory is not finitely axiomatized. For example, the axiom of replacement is not really a single axiom, but an infinite family of axioms, since it is preceded by the stipulation that it is true "For any set-theoretic formula ." Montague (1961) proved that Zermelo-Fraenkel set theory is not finitely axiomatizable, i.e., there is no finite set of axioms which is logically equivalent to the infinite set of Zermelo-Fraenkel axioms. von Neumann-Bernays-Gödel set theory provides an equivalent finitely axiomized system.
REFERENCES:
Montague, R. "Semantic Closure and Non-Finite Axiomatizability. I." In Infinitistic Methods, Proceedings of the Symposium on Foundations of Mathematics, (Warsaw, 2-9 September 1959). Oxford, England: Pergamon, pp. 45-69, 1961.
Zermelo, E. "Über Grenzzahlen und Mengenbereiche." Fund. Math. 16, 29-47, 1930.
|
|
"عادة ليلية" قد تكون المفتاح للوقاية من الخرف
|
|
|
|
|
ممتص الصدمات: طريقة عمله وأهميته وأبرز علامات تلفه
|
|
|
|
|
ضمن مشروع الحزام الأخضر البدء بالمرحلة الثانية لتأهيل واحة الإمام الحسين (عليه السلام)
|
|
|