المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

علم الاحياء
عدد المواضيع في هذا القسم 10456 موضوعاً
النبات
الحيوان
الأحياء المجهرية
علم الأمراض
التقانة الإحيائية
التقنية الحياتية النانوية
علم الأجنة
الأحياء الجزيئي
علم وظائف الأعضاء
المضادات الحيوية

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
تـشكيـل اتـجاهات المـستـهلك والعوامـل المؤثـرة عليـها
2024-11-27
النـماذج النـظريـة لاتـجاهـات المـستـهلـك
2024-11-27
{اصبروا وصابروا ورابطوا }
2024-11-27
الله لا يضيع اجر عامل
2024-11-27
ذكر الله
2024-11-27
الاختبار في ذبل الأموال والأنفس
2024-11-27

Word stress
2024-05-21
تطبيقات اصالة التخيير في الفقه
25-8-2016
نشأة الجغرافيا الحديثة
3-11-2021
Consonants Initial fricative voicing
2024-02-23
معنى (أحد) في قوله {قُلْ هُو اللّٰهُ أَحَدٌ}
27-11-2015
أبعـاد التنميـة المُستدامـة
24-11-2020

Feed–Fast Cycle  
  
2882   10:22 صباحاً   date: 26-11-2021
Author : Denise R. Ferrier
Book or Source : Lippincott Illustrated Reviews: Biochemistry
Page and Part :


Read More
Date: 2-9-2021 1521
Date: 13-9-2021 1578
Date: 3-1-2022 801

Feed–Fast Cycle

 

The flow of intermediates through metabolic pathways is controlled by four regulatory mechanisms: 1) the availability of substrates, 2) allosteric activation and inhibition of enzymes, 3) covalent modification of enzymes, and 4) induction-repression of enzyme synthesis. In the absorptive state, the 2- to 4-hour period after ingestion of a meal, these mechanisms insure that available nutrients are captured as glycogen, triacylglycerol (TAG), and protein (Fig. 1).

During this interval, transient increases in plasma glucose, amino acids, and TAG occur, the last primarily as components of chylomicrons synthesized by the intestinal mucosal cells. The pancreas responds to the elevated levels of glucose with an increased secretion of insulin and a decreased secretion of glucagon.

The elevated insulin/glucagon ratio and the ready availability of circulating substrates make the absorptive state an anabolic period during which virtually all tissues use glucose as a fuel. In addition, the liver replenishes its glycogen stores, replaces any needed hepatic proteins, and increases TAG synthesis.
The latter are packaged in very-low-density lipoproteins, which are exported to the peripheral tissues. Adipose tissue increases TAG synthesis and storage, whereas muscle increases protein synthesis to replace protein degraded since the previous meal. In the fed state, the brain uses glucose exclusively as a fuel. In fasting, plasma levels of glucose, amino acids, and TAG fall, triggering a decline in insulin secretion and an increase in glucagon and epinephrine secretion. The decreased insulin/counterregulatory hormone ratio and the decreased availability of circulating substrates make the fasting state a catabolic period. This sets into motion an exchange of substrates among the liver, adipose tissue, skeletal muscle, and brain that is guided by two priorities: 1) the need to maintain adequate plasma levels of glucose to sustain energy metabolism of the brain and other glucose-requiring tissues and 2) the need to mobilize fatty acids (FA) from adipose tissue and release ketone bodies from liver to supply energy to other tissues. To accomplish these goals, the liver degrades glycogen and initiates gluconeogenesis, using increased FA oxidation to supply the energy and reducing equivalents needed for gluconeogenesis and the acetyl coenzyme A building blocks for ketogenesis. The adipose tissue degrades stored TAG, thus providing FA and glycerol to the liver. The muscle can also use FA as fuel as well as ketone bodies supplied by the liver. The liver uses the glycerol for gluconeogenesis. Muscle protein is degraded to supply amino acids for the liver to use in gluconeogenesis but decreases as ketone bodies increase. The brain can use both glucose and ketone bodies as fuels. From late fasting into starvation, the kidneys play important roles by synthesizing glucose and excreting the protons from ketone body dissociation as ammonium (NH4+).


Figure 1: Key concept map for the feed–fast cycle. VLDL = very-lowdensity lipoprotein.




علم الأحياء المجهرية هو العلم الذي يختص بدراسة الأحياء الدقيقة من حيث الحجم والتي لا يمكن مشاهدتها بالعين المجرَّدة. اذ يتعامل مع الأشكال المجهرية من حيث طرق تكاثرها، ووظائف أجزائها ومكوناتها المختلفة، دورها في الطبيعة، والعلاقة المفيدة أو الضارة مع الكائنات الحية - ومنها الإنسان بشكل خاص - كما يدرس استعمالات هذه الكائنات في الصناعة والعلم. وتنقسم هذه الكائنات الدقيقة إلى: بكتيريا وفيروسات وفطريات وطفيليات.



يقوم علم الأحياء الجزيئي بدراسة الأحياء على المستوى الجزيئي، لذلك فهو يتداخل مع كلا من علم الأحياء والكيمياء وبشكل خاص مع علم الكيمياء الحيوية وعلم الوراثة في عدة مناطق وتخصصات. يهتم علم الاحياء الجزيئي بدراسة مختلف العلاقات المتبادلة بين كافة الأنظمة الخلوية وبخاصة العلاقات بين الدنا (DNA) والرنا (RNA) وعملية تصنيع البروتينات إضافة إلى آليات تنظيم هذه العملية وكافة العمليات الحيوية.



علم الوراثة هو أحد فروع علوم الحياة الحديثة الذي يبحث في أسباب التشابه والاختلاف في صفات الأجيال المتعاقبة من الأفراد التي ترتبط فيما بينها بصلة عضوية معينة كما يبحث فيما يؤدي اليه تلك الأسباب من نتائج مع إعطاء تفسير للمسببات ونتائجها. وعلى هذا الأساس فإن دراسة هذا العلم تتطلب الماماً واسعاً وقاعدة راسخة عميقة في شتى مجالات علوم الحياة كعلم الخلية وعلم الهيأة وعلم الأجنة وعلم البيئة والتصنيف والزراعة والطب وعلم البكتريا.