المرجع الالكتروني للمعلوماتية
المرجع الألكتروني للمعلوماتية

الرياضيات
عدد المواضيع في هذا القسم 9761 موضوعاً
تاريخ الرياضيات
الرياضيات المتقطعة
الجبر
الهندسة
المعادلات التفاضلية و التكاملية
التحليل
علماء الرياضيات

Untitled Document
أبحث عن شيء أخر المرجع الالكتروني للمعلوماتية
حق مالك الضمان في الاحتفاظ بملكية العين المخصصة للضمان
2025-04-05
حق المالك في إيجار العين المخصصة للضمان
2025-04-05
Farsi (Samiian 1994; Ghomeshi 1997; Ghozati 2000; Kahnemuyipour 2000)
2025-04-05
The Ezafe construction
2025-04-05
Ezafe and the deep position on nominal modifiers Introduction
2025-04-05
الايمان عند الهلاك غير مقبول
2025-04-05

الميرزا محمد تقي المدعو بالحاج بانا الشيرازي
28-1-2018
عوامل تقدم السياحة - الموارد الاجتماعية والحضارية
3-1-2018
Factors Affecting Solubility
7-9-2020
العهد الإلهي مع الإنسان
11-3-2016
إتيان الزوجة عند ميلها إلى ذلك
2024-10-17
موعد زراعة اللفت الزيتي
22-6-2022

Interpolant  
  
1253   01:03 صباحاً   date: 19-11-2021
Author : Itô, K. (Ed.)
Book or Source : "Interpolation." Section 223 (XV.2) in Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press
Page and Part : pp. 843-847


Read More
Date: 11-2-2016 1394
Date: 16-2-2016 1825
Date: 23-8-2021 2399

Interpolant

In univariate interpolation, an interpolant is a function L=L(x) which agrees with a particular function f at a set of known points x_0,x_1,x_2,...,x_n and which is used to compute values for f(x) at points x!=x_ii=0,1,2,...,n.

Modulo a change of notation, the above definition translates verbatim to multivariate interpolation models as well.

Generally speaking, the properties required of the interpolant are the most fundamental designations between various interpolation models. For example, the main difference between the linear and spline interpolation models is that the interpolant of the prior is required merely to be piecewise linear whereas spline interpolants are assumed to be piecewise polynomial and globally smooth.


REFERENCES:

Itô, K. (Ed.). "Interpolation." Section 223 (XV.2) in Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, pp. 843-847, 1980.




الجبر أحد الفروع الرئيسية في الرياضيات، حيث إن التمكن من الرياضيات يعتمد على الفهم السليم للجبر. ويستخدم المهندسون والعلماء الجبر يومياً، وتعول المشاريع التجارية والصناعية على الجبر لحل الكثير من المعضلات التي تتعرض لها. ونظراً لأهمية الجبر في الحياة العصرية فإنه يدرّس في المدارس والجامعات في جميع أنحاء العالم. ويُعجب الكثير من الدارسين للجبر بقدرته وفائدته الكبيرتين، إذ باستخدام الجبر يمكن للمرء أن يحل كثيرًا من المسائل التي يتعذر حلها باستخدام الحساب فقط.وجاء اسمه من كتاب عالم الرياضيات والفلك والرحالة محمد بن موسى الخورازمي.


يعتبر علم المثلثات Trigonometry علماً عربياً ، فرياضيو العرب فضلوا علم المثلثات عن علم الفلك كأنهما علمين متداخلين ، ونظموه تنظيماً فيه لكثير من الدقة ، وقد كان اليونان يستعملون وتر CORDE ضعف القوسي قياس الزوايا ، فاستعاض رياضيو العرب عن الوتر بالجيب SINUS فأنت هذه الاستعاضة إلى تسهيل كثير من الاعمال الرياضية.

تعتبر المعادلات التفاضلية خير وسيلة لوصف معظم المـسائل الهندسـية والرياضـية والعلمية على حد سواء، إذ يتضح ذلك جليا في وصف عمليات انتقال الحرارة، جريان الموائـع، الحركة الموجية، الدوائر الإلكترونية فضلاً عن استخدامها في مسائل الهياكل الإنشائية والوصف الرياضي للتفاعلات الكيميائية.
ففي في الرياضيات, يطلق اسم المعادلات التفاضلية على المعادلات التي تحوي مشتقات و تفاضلات لبعض الدوال الرياضية و تظهر فيها بشكل متغيرات المعادلة . و يكون الهدف من حل هذه المعادلات هو إيجاد هذه الدوال الرياضية التي تحقق مشتقات هذه المعادلات.