Read More
Date: 8-7-2021
![]()
Date: 20-7-2021
![]()
Date: 6-7-2021
![]() |
Mergelyan's theorem can be stated as follows (Krantz 1999). Let be compact and suppose
has only finitely many connected components. If
is holomorphic on the interior of
and if
, then there is a rational function
with poles in
such that
![]() |
(1) |
A consequence is that if is an infinite set of disjoint open disks
of radius
such that the union is almost the unit disk. Then
![]() |
(2) |
Define
![]() |
(3) |
Then there is a number such that
diverges for
and converges for
. The above theorem gives
![]() |
(4) |
There exists a constant which improves the inequality, and the best value known is
![]() |
(5) |
REFERENCES:
Krantz, S. G. "Mergelyan's Theorem." §11.2 in Handbook of Complex Variables. Boston, MA: Birkhäuser, pp. 146-147, 1999.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, pp. 36-37, 1983.
Mandelbrot, B. B. Fractals. San Francisco, CA: W. H. Freeman, p. 187, 1977.
Melzack, Z. A. "On the Solid Packing Constant for Circles." Math. Comput. 23, 1969.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|