The study of manifolds having a complete Riemannian metric. Riemannian geometry is a general space based on the line element
![]() |
with for
a function on the tangent bundle
. In addition,
is homogeneous of degree 1 in
and of the form
![]() |
(Chern 1996). If this restriction is dropped, the resulting geometry is called Finsler geometry.
REFERENCES:
Besson, G.; Lohkamp, J.; Pansu, P.; and Petersen, P. Riemannian Geometry. Providence, RI: Amer. Math. Soc., 1996.
Buser, P. Geometry and Spectra of Compact Riemann Surfaces. Boston, MA: Birkhäuser, 1992.
Chavel, I. Eigenvalues in Riemannian Geometry. New York: Academic Press, 1984.
Chavel, I. Riemannian Geometry: A Modern Introduction. New York: Cambridge University Press, 1994.
Chern, S.-S. "Finsler Geometry is Just Riemannian Geometry without the Quadratic Restriction." Not. Amer. Math. Soc. 43, 959-963, 1996.
do Carmo, M. P. Riemannian Geometry. Boston, MA: Birkhäuser, 1992.
|
|
"إنقاص الوزن".. مشروب تقليدي قد يتفوق على حقن "أوزيمبيك"
|
|
|
|
|
الصين تحقق اختراقا بطائرة مسيرة مزودة بالذكاء الاصطناعي
|
|
|
|
|
قسم شؤون المعارف ووفد من جامعة البصرة يبحثان سبل تعزيز التعاون المشترك
|
|
|