Read More
Date: 23-7-2021
![]()
Date: 24-5-2021
![]()
Date: 24-7-2021
![]() |
Given a principal bundle , with fiber a Lie group
and base manifold
, and a group representation of
, say
, then the associated vector bundle is
![]() |
(1) |
In particular, it is the quotient space where
.
This construction has many uses. For instance, any group representation of the orthogonal group gives rise to a bundle of tensors on a Riemannian manifold as the vector bundle associated to the frame bundle.
For example, is the frame bundle on
, where
![]() |
(2) |
writing the special orthogonal matrix with rows . It is a
bundle with the action defined by
![]() |
(3) |
which preserves the map .
The tangent bundle is the associated vector bundle with the standard group representation of on
, given by pairs
, with
and
. Two pairs
and
represent the same tangent vector iff there is a
such that
and
.
|
|
دخلت غرفة فنسيت ماذا تريد من داخلها.. خبير يفسر الحالة
|
|
|
|
|
ثورة طبية.. ابتكار أصغر جهاز لتنظيم ضربات القلب في العالم
|
|
|
|
|
العتبة العباسية المقدسة توجه دعوة لجامعة القادسية للمشاركة في حفل التخرج المركزي
|
|
|