Read More
Date: 2-8-2021
1831
Date: 12-5-2021
1414
Date: 5-6-2021
1895
|
A flow defined analogously to the Anosov diffeomorphism, except that instead of splitting the tangent bundle into two invariant sub-bundles, they are split into three (one exponentially contracting, one expanding, and one which is one-dimensional and tangential to the flow direction).
REFERENCES:
Anosov, D. "Roughness of Geodesic Flows on Compact Riemannian Manifolds of Negative Curvature." Dokl. Akad. Nauk SSSR 145, 707-709, 1962. English translation in Soviet Math. Dokl. 3, 1068-1069, 1962.
Anosov, D. "Ergodic Properties of Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature." Dokl. Akad. Nauk SSSR 151, 1250-1252, 1963. English translated in Soviet Math. Dokl. 4, 1153-1156, 1963.
|
|
تفوقت في الاختبار على الجميع.. فاكهة "خارقة" في عالم التغذية
|
|
|
|
|
أمين عام أوبك: النفط الخام والغاز الطبيعي "هبة من الله"
|
|
|
|
|
المجمع العلمي ينظّم ندوة حوارية حول مفهوم العولمة الرقمية في بابل
|
|
|