Read More
Date: 31-3-2021
![]()
Date: 1-4-2021
![]()
Date: 8-3-2021
![]() |
There are essentially three types of Fisher-Tippett extreme value distributions. The most common is the type I distribution, which are sometimes referred to as Gumbel types or just Gumbel distributions. These are distributions of an extreme order statistic for a distribution of elements
. In this work, the term "Gumbel distribution" is used to refer to the distribution corresponding to a minimum extreme value distribution (i.e., the distribution of the minimum
).
The Gumbel distribution with location parameter and scale parameter
is implemented in the Wolfram Language as GumbelDistribution[alpha, beta].
It has probability density function and distribution function
![]() |
![]() |
![]() |
(1) |
![]() |
![]() |
![]() |
(2) |
The mean, variance, skewness, and kurtosis excess are
![]() |
![]() |
![]() |
(3) |
![]() |
![]() |
![]() |
(4) |
![]() |
![]() |
![]() |
(5) |
![]() |
![]() |
![]() |
(6) |
where is the Euler-Mascheroni constant and
is Apéry's constant.
The distribution of taken from a continuous uniform distribution over the unit interval has probability function
![]() |
(7) |
and distribution function
![]() |
(8) |
The th raw moment is given by
![]() |
(9) |
The first few central moments are
![]() |
![]() |
![]() |
(10) |
![]() |
![]() |
![]() |
(11) |
![]() |
![]() |
![]() |
(12) |
The mean, variance, skewness, and kurtosis excess are therefore given by
![]() |
![]() |
![]() |
(13) |
![]() |
![]() |
![]() |
(14) |
![]() |
![]() |
![]() |
(15) |
![]() |
![]() |
![]() |
(16) |
If are instead taken from a standard normal distribution, then the corresponding cumulative distribution is
![]() |
![]() |
![]() |
(17) |
![]() |
![]() |
![]() |
(18) |
where is the normal distribution function. The probability distribution of
is then
![]() |
![]() |
![]() |
(19) |
![]() |
![]() |
![]() |
(20) |
The mean and variance
are expressible in closed form for small
,
![]() |
![]() |
![]() |
(21) |
![]() |
![]() |
![]() |
(22) |
![]() |
![]() |
![]() |
(23) |
![]() |
![]() |
![]() |
(24) |
![]() |
![]() |
![]() |
(25) |
and
![]() |
![]() |
![]() |
(26) |
![]() |
![]() |
![]() |
(27) |
![]() |
![]() |
![]() |
(28) |
![]() |
![]() |
![]() |
(29) |
![]() |
![]() |
![]() |
(30) |
No exact expression is known for or
, but there is an equation connecting them
![]() |
(31) |
REFERENCES:
Gumbel, E. J. "Multivariate Extremal Distributions." Bull. Inst. Internat. de Statistique 37, 471-475, 1960a.
Gumbel, E. J. "Distributions del valeurs extremes en plusieurs dimensions." Publ. l'Inst. de Statistique, Paris 9, 171-173, 1960b.
Gumbel, E. J. "Bivariate Logistic Distributions." J. Amer. Stat. Assoc. 56, 335-349, 1961.
Gumbel, E. J. and Mustafi, C. K. "Some Analytical Properties of Bivariate Extreme Distributions." J. Amer. Stat. Assoc. 62, 569-588, 1967.
Johnson, N.; Kotz, S.; and Balakrishnan, N. Continuous Univariate Distributions, Vol. 2, 2nd ed. New York: Wiley, 1995.
|
|
التوتر والسرطان.. علماء يحذرون من "صلة خطيرة"
|
|
|
|
|
مرآة السيارة: مدى دقة عكسها للصورة الصحيحة
|
|
|
|
|
نحو شراكة وطنية متكاملة.. الأمين العام للعتبة الحسينية يبحث مع وكيل وزارة الخارجية آفاق التعاون المؤسسي
|
|
|